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Attractive operators and fixed points

by BEATRIZ MARGOLIS (La Plata, Argentina)

Let (X, d) be a metric space, and T a self-mapping of X. If z¢ X,

let L(z) = (T"x), i.e. the set of limit points of the iterates of # by T.
In [2], the authors obtained results concerning L(x) for 7' continuous,
assuming essentially: a) the existence and compactness of F(T) = the
set of fixed points of T; b) d(Tx, F(T)) < d(z, F(T)) whenever x¢ F(T).

In the present article we want to study F(T') for a given T, without
prescribing its existence a priori; we use a property similar to b), but
for arbitrary sets. Thus we are able to obtain ‘“bounds” for F(T') and
in case F(T') is not empty, we obtain the convergence of suitable sequences
of iterates to a fixed point. Several examples will show the necessity of
the conditions involved, and will also give an idea of the extent of the
results obtained.

The second part of the paper deals with the relationship among the
so-called attractive operators and other known classes of operators.

For other results related to a condition of type b), see [3], [5].

1. DEFINITION 1.1. Let (X, d) be a metric space, B a non-empty
proper subset of X, and T a self-mapping of X. T is said to be attractive
with respect to B (in short, B-altractive), if B is T-invariant (i.e. 7(B) < B),
and d(Tz, B) < d(x, B) whenever z is not in B.

Our aim is to study B-attractive operators; essential for us will
be the family of sets with respect to which 7 is attractive.

Notation. & ={BS X/B #@, T is B-attractive}, 2 =Brl' B,
F(T) = {we X|Tx = z}, /' = {Beo/{B is closed}, 2' = () B.

Besd!

LEMMA 1.1. Be o = F(T) c B.

Proof. We may assume that F(T) # @, for otherwise the result
is obvious. Let ye F'(T)\B. Then: d(y, B) = d(Ty, B) < d(y, B), which
is clearly impossible. Hence, F(7T) < B for all Be «.

COROLLARY 1.1. F(T) c 2.

COROLLARY 1.2. If two sels in o/ are disjoint, T does not have any
fized point.

The converse is not true, as we now show.
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ExaMPLE 1.1. Let X = {0,1, 2, 3}, and define: 7(0) =1, T(1) = 2,
T2)=1,T3) =2.

Clearly, B = {1, 2}¢ <, for T (%)< B for each x. Furthermore, 2 = B;
but F(T) = 9. '

From now on, unless otherwise stated, ./ will always mean «’.
Same indication for 2.

Remark 1.1. T continuous, Be &/ = Be &/'.

THEOREM 1.1. Any two compact elements in </ have a mon-empty
intersection.

Proof. Let B,, B,e &/, both compact, and assume B, N B, = @.

Then, d = d(B,, B,) > 0, and we may find z,¢ B,, x,¢ B, such that
d(2,, %;) = d. Since z,¢ B, and B,e &, d(T2,, B,) < d(2y, B,) < d(2,, %5)
= d(B,, B,). But Tz, ¢ B,, so that this contradiction implies B, " B, # @.

THEOREM 1.2. If X is compact and T is continuous, 2 + @. (In view
of Remark 1.1, since F(T) is closed when 7 is continuous, we see that
working with closed subsets B is by no means a restriction.)

Proof. We preceed by induction on k() = cardinality of «.

If k(<) = 1, the result is obvious. If k(%) = 2, this is Theorem 1.1.
Assume the result to be true when k(%) = n. Let k(%) = n+1; hence
& = {B,, B,, ..., B}, and assume that the Theorem does not hold.

n-+1
Then, () B; = @; owing to the inductive hypothesis, for each h, 1 <k
t=1 n+1
< n+1, there exists an x,¢ B,, ,¢C, = () B;. Fix one such hk, say &,
i=1
i£h
and write for simplicity, x =z, , € = C; . Let y;, = T*x. Since elements
in &/ are T-invariant, we have y,¢C (k =1, 2,...). C is compact, hence
sequentially compact, and therefore (y,) has a convergent subsequence
(which we call again (y,)), i.e. ¥, = yeC.
Since T is continuous, Ty, — Ty. Also, C N B, =@ implies y,¢ By,
(k =1,2,3,...). Let ay = d(¥;, By). Since y,¢ B, and B, < 7, (a) is
a decreasing sequence of positive numbers. Hence, a, - a> 0. If a = 0,
d(y, By,) = 0, and ye By , which is clearly impossible, for y< C. Hence,
a > 0. Therefore, d(Ty, B, ) < d(y, By) = a. But we also have: d(Ty, By)
= limd(Ty,, B, ) = lima,,, = a = d(y, B,). This contradiction shows
that if k(&) = n+1, then 2 + @.
Therefore, we have shown that any finite collection of sets in 7
has a non-empty intersection. Therefore, since X is compact, all sets
in & have a common element, i.e. 9 # .

Remark 1.2. If X were a Banach space, the conclusion of Theorem
1.2 would be valid merely by requiring the existence of a compact convex
element in ./, for in this case Schauder’s Theorem would imply F(T) # @,
and hence 2 +# 0.
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We saw in Example 1.1 a case where @ = F(T) ; 2. We will now
give an example where F(T) # O, being still a proper subset of 2. This
example will also show that the connectedness of X plays no significant
role in this situation.

ExaMPLE 1.2. Let X be the plane with Euclidean distance, and for
xz = ré", define

r ,’.ei(t+a), 0<r<1,
r =1
etra) r>1,

where a > 0 is chosen small enough, and such that ka == 0 (2=), 4 =1, 2, ..
Clearly, T is continuous. Also, F'(T') = {0}. Let B be the closed unit disc
All points outside B are mapped into B, so that Be o7, for T restricted
to B is just a rotation. Moreover, we cannot have B¢ </, B, = B. For,
assuming this to be true, let x — re®ec B;. Then Tz = re'¢*"¢ B,,
n =1,2,...; ie., (T"xz) is dense in the boundary of the circle of radius r.
Since B, is closed, it contains this boundary. Therefore, d = d(B;, B) > 0,
and B, is precisely the disc of radius ». Hence, if ¢ B, and ze¢ B, d(Tx, B,)
= d(x, B,), 1.e. B,¢ &/. Therefore, B is the smaller set in /. Hence,
2 = B Z F(T). And, moreover, F(T) = {0} is in the interior of 2.

DrrinNITION 1.2. T will be called attractive if it is F(T')-attractive,
ie. .d(Tz, F(T)) < d(x, F(T)} if w¢ F(T).

In other words, T is attractive if and only if F(7T)e & (we remark
that for this case &/ does not mean &7).

It is clear that T attractive implies F(T) = 2. It is natural to ask:
does F(T) = 2, F(T) + O, imply F(T)e & ? In other words, is attracti-
vity characterized by F(T) = 2 ? Unfortunately, we have no satisfactory
answer to this question.

The best thing we can say in this case is that a ‘““good” choice of
iterates always produces a fixed point, no matter the initial point. (See
Lemma 1.3.)

LEMMA 1.2. Let X be compact, T continuous. Then, for each xe¢ X and
Be o/, L(z) "B #@.

In other words, mo matter where we start, with a suitable subsequence
of tilerates, we can always end up in B.

Proof. If ze B or if T x¢ B for some h, the result is obvious owing
to the T-invariance and compactness of B. Therefore, assume x¢ B,
T"x¢B, h=1,2,... Let a, =d(T"», B). Since a,,, = d(T""'z, B)
= d(T(T"=), B) < d(T"z, B) = a,, (a;) is a strictly decreasing sequence
of positive numbers. Therefore, a, — a > 0. The same reasoning as that
used in proving Theorem 1.2 shows that a > 0 is impossible. Therefore,
a =0 and L(x) n B # 0.
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LeMMA 1.3. With the hypothesis of the previous Lemma, L(x) N D + @
for each xe X. )

Proof. As before, assume z¢ 2, and T"z¢ 2, h =1, 2, ...

We proceed by induction on k(7). If k(&) = 1, this is Lemma 1.2.
Assume the result to be true for k(27) = n, and let k(&) = a;,—l—l, i.e.
o = {B,, B,, ..., B,,,}. Since xr¢ 2, for some B;e &/, z¢ B;,. By, rear-
rangement, we may assume z¢ B,. By the previous Lemma, L(z) N B, # @.
Let ¢,¢ L(x) N B,. If 2,¢ 2, we may assume x,¢ B,; hence, L(z,) N B, # @
(the previous Lemma). But L(x;) = L(z), for L(L(»)) = L(»), and
L(z,) = B,. Hence: L(x) n B, N B, # @. Repeating the procedure at

nt1

most n+1 times, we arrive at: L(z) n () B; = L(x) N 2 # 0.
i=1

We see that any finite collection of sets in {L(x) n B;} has a non-
empty intersection. Hence, with the same reasoning as that used in
Theorem 1.2, we get L(x) N2 # 0. :

Until now, the use of the attractivity condition has prescribed
F(T) + 3. We ask: when does 2 0 imply F(T) 0%

THEOREM 1.3. Let X be a Banach space with the the metric induced
by its norm, and T a continuous self-mapping of X, 2 +# O, such that, for
some n >0, T"(2) is convex. Then, F(T) # O.

Proof. Let Y, = T"(2), with ¥, = 2. It is clear that ¥, > ¥, ,
= T'(Y,). Hence, by Schauder’s- Theorem, we get our result.

Of course, T"(2) convex for some » is by no means necessary. For,
let X ={0,1,2,3}, T(0) =1, T(1) =1, T(2) =2, T(3) =2. Then,
2 = F(T) = {1, 2}, but T"(2) is not convex for any n.

2. In this Section we will show the relationships between F(T),
2 and 2 for some well-known classes of operators.

We recall the following definitions for 7', a self-mapping of the metrie
space (X, d) and =, y arbitrary elements in X.

DEFINITION 2.1. T is called:

(a) Strictly contractive if there exists an re [0, 1) such that d(Tx, Ty)
<rd(z, y).

(b) Contractive if d(Tx, Ty) < d(z, y), ¢ # y.

(¢) Non-expansive if d(Tz, Ty) < d(x, y).

(d) Isometric if d(Tx, Ty) = d(z, y).

(e) Non-contractive if d(Tx, Ty) > d(x, y).

(f) Expansive if d(Tx, Ty) > d(z,y), © # y.

(g) Strictly expansive if there exists an s > 1 such that d(T'z, Ty)
> sd(z, y).

LEMMA 2.1. T coniractive, F(T) # @ implies F(T)e o/ (we observe
that no restrictions were made on X, so that we have toprescribe F(T) # ).
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Proof. Clearly, F(T) consists of exactly one element, say u. Let
y¢ F(T), i.e. ¥y # u. Then: d(Ty, F(T)) = d(Ty, u) = d(Ty, Tu) < d(y, u)
= d(y, F(T)).

COROLLARY 2.1. T strictly contractive, F(T) + O, imply F(T)e.o.

COROLLARY 2.2. T contractive (strictly contractive), F(T) +# @, imply
T = 2.

If T is merely non-expansive, the above results are not necessarily
true.

EXAMPLE 2.1. Let X =[—1,1]x[—1, 1], with I, norm. If v = (z, ¥),
let Tu = (v, |z|). Hence, T is non-expansive, and F(T) = {(x, 2)/0 < 2 < 1}.
Let » = (—1, —1). Then Tv = (—1,1), and d(Tv, F(T)) = d(v, F(T)),
so that F(T)¢ o/, and Lemma 2.1 does not hold.

We now show that .o # 4. Let B be the union of the first and second
quadrant in X. Clearly, T'(B) ¢ B. Furthermore, if 2¢ B, Tz¢ B, so that
Be .

Any suitable B’e o has to contain F(T). Now, if it contains any
other point in the first quadrant, since its immage is symmetric with
respect to F(T'), and B must be T-invariant, it will be symmetric with
respect to F(T). If it does not contain some point % in that quadrant
it will not contain its symmetric Tu with respect to F(T') either, by the same
argument, and hence d(u, B') = d(Tu, B'), so that B'¢ /. Hence, any
set in ./ contains the first quadrant, i.e. F'(T) will be a proper subset
of 2, so that Corollary 2.2 does not hold for non-expansive operators.

LeMMA 2.2. T ewpansive, A c X, A: closed and bounded, implies
T(4) ¢ A.

Proof. Assume 7(4) c A. Let D = dlam(A) = ma,xd(w, 7).

Then, there exist u, ve A such that d(u, 'v) D. Hence D = d(u, v)
< d@(Tu, Tv) < maxd(Tz, Ty) = diam(T(4)), i.e. diam(4)< diam(T(4))
A
< diam(A4), which is clearly impossible. .
COROLLARY 2.3. T expansive (strictly expansive) implies o = O.
LEMMA 2.3. T non-coniractive implies F(T)e €A (€ = complement
of ).

Proof. Assume F(T) # @. Otherwise, the result is obvious.
Let ze F(T). Then:

d(Tw, F(T)) = infd(Tz, ) = infd(Tx, Tu) > infd(x, u) = d(m, F(T)).
F(T) F(T) F(T)
CoROLLARY 2.4. T isometric implies F(T)e € «.

COBROLLARY 2.5. T non-coniractive, isomelric, expansive, or strictly
expansive, F'(T) # O, imply F(T)4¢ <.
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We now ask; do Lemma 2.1 and or Corollaries 2.1, 2.2 characterize
contractive or strictly contractive operators ? The answer is no.

ExAaMpPLE 2.2. Let X = [0, 2] with the usual metric, and define T
as follows:

iz if 0<e<1,
Tr =13z-1 if 1<o<3,
5 if 3 <z<2.

Clearly, F(T) = {0}. Hence, d(z, F(T)) ==, d(Tv, F(T)) = Tz,
O<s<l=>Tr=lr<z; l1<e<+=>Tr =3z—1=0+}x—1=2a+
+i@-2)<w; i<e<2=>Tr=5s<i<uw

Hence, ¢ F(T) = &(Tx, F(T)) < d(», F(T)), i.e. F(T)e «. However,
T is not even non-expansive. This also shows that Corollary 2.2 does
not characterize contractive and/or strictly contractive operators. The
same example shows that we could not even hope that Lemma 2.1 charac-
terizes contractive operators, if one prescribes F(7T) to be exactly one
point.

Examples 2.1 and 2.2 show that attractiveness is indeed a mnew
property, independent of non-expansiveness.

To summarize, our results could be visualized as follows, with the
basic assumption F(T) # Q.

T == T = T <« T > T « T « T

atr. contr. contr. non-exp. isom. pon-contr, exp. str. exp.
Y Y Y
F(T)est F(T) by A =0
¢ '
FT) =2 F(T)¢ s

3. Remark 3.1. In [4], Kirk introduced the following concepts:
let X be a Banach space, G ¢« K ¢ X, T': K - X with the property that
for each ze K there is an a(z) <1 such that |Tu—Tz| < a(z)|u—z|
for each u ¢ G. Then 7T is said to be uniformly strict contractive on G relative
to K.

Define d(z,y) = |[z—y|/, and assume T'(G)c G, K = X; if z¢ @,
then z¢ T(G) and

d(Tx, T(@) = intd(Tw, Tu) < a(z) inf d(z, ) = a(x) d(z, @),
¢ G

T@) < G = d(Tx, T(@)) > d(Tx,G). Hence, d(Tz,q)< alz)d(z, )<
< d(z, @), so that if G is T-invariant, and T is uniformly strict contractive
on G relative to X, then T is G-attractive.
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