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EQUIVALENCE THEOREMS FOR INFINITE PRODUCTS
OF INDEPENDENT RANDOM ELEMENTS
ON METRIC SEMIGROUPS

BY

T. BYCZKOWSKI axp J. WOS (WROCEAW)

This paper is a continuation of [2]. The purpose is to establish the
equivalence of convergence in law, in probability and with probability
one for infinite products of independent random elements with values
in a metric semigroup S (Theorems 3.1 and 3.2). Throughout this paper
we assume, unless stated otherwise, that 8 satisfies conditions (R) and (L),
i.e., for any compact 4, B < 8, A7'B and AB~' are compact. Results
of this paper generalize the earlier ones obtained by Loynes and others
for random elements with values in topological groups.

1. Preliminaries. We use the terminology and notation introduced
in [2]. We assume also that the reader is familiar with the standard semi-
group concepts (see [4]). For information on topological semigroups
(compact and locally compact semigroups, in particular) the reader is
referred te [1], [11], and [12].

Now, let ue8. A measure u is called idempotent if uu = u. The
following lemma describes the support of u.

LEMMA 1.1. Let S be a metric semigroup satisfying (R). If ue 8 is
an idempotent measure, then its support is a completely simple subsemi-
group.

This lemma has been proved in [9] (Theorem 3.2) where S was assumed
to be locally compact. The proof given there yields the following result:
if S is a metric semigroup and u € 8§ is an idempotent, then C (@) (the
support of u) contains the minimal two-sided ideal K which is completely
simple and dense in C(u) (see [9], Remark 3). In order to prove that K
is closed (and then K = K = (C(u)) it is sufficient to show that every
closed subsemigroup G which is algebraically a group is, in fact, a topolo-
gical group (the inversion in @ is continuous) (see [9], Remark 3, and [1],
p. 61). However, if G is a closed subsemigroup, then it satisfies also (R)
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and, therefore, the inversion in @ is continuous whenever G is an algebraic
group ([10], Proposition 1). By these remarks and by the proof of Theo-
rem 3.2 in [9] we have also the following

LEMMA 1.2. Let 8 be a metric semigroup satisfying (R) and let u e 8
be an idempotent. If the support C(u) of u is a left group, then us = u for
every 8 € C(u).

The next lemma is proved in [13] (Theorem 3.3) where S is assumed
to be compact, however, the proof remains valid if § is assumed to be
only metric.

LeMMA 1.3. Let A e 8. Suppose that the family

I = (A, 2., .0

18 uniformly tight. Then the sequence

1 v,
xn=—-2).'
n <

1=1

converges in S to a measure m € 8 such that
mi = Am =m = m?2.

Definition 1.1. Let S be an (algebraic) semigroup. H < S is called
left [right] unitary if H'H < H [HH ' < H]. If H is both left and
right unitary, then it is called unitary (see [4], Vol. II, p. 55).

The following lemma is proved in [15], Lemma 2.1, and it is needed
for our further considerations. Its proof is included here only for the sake
of completeness. .

LeEMMA 1.4. Let 8 be a semigroup having no mon-trivial right-zero
subsemigroups. Suppose that H is a left unitary subsemigroup of 8 wiith
completely simple kernel K. Then H is a unitary subsemigroup of S.

Proof. Observe first that the assumption that § has no non-trivial
right-zero subsemigroups is equivalent to the following inclusion: ee™!
c ¢ 'e for every e € E(S). From this assumption it follows also that the
completely simple kernel K of H is a left group (see [4], § 2.7).

Now, let ab and b be some elements of H. If %, € K, then bk, € K.
Let k, € bk, K be such that bk,k, = e, where e* = e is the identity of the
group bk,K. Write &k = k,k,. Then bk = e, 80 abk = ae € K. Since K is
left simple, there exists # € K such that zae = ¢ which means that za € ee™".
Hence, by the observation given above, we obtain za e e”'e. Thus
ex, (ex)a € H and, since H is left unitary, it follows that a € H, which com-

pletes the proof.

2. The equation ul = u. Throughout this section, S will denote
a metric semigroup satisfying condition (R).
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We say that S satisfies condition (g) if for every u € § and for every
8 € S we have the following implication

(us = u) = (v8 = x for every x € C(u)).

The following theorem shows that (g) has a simple algebraic char-
acterization:

THEOREM 2.1. S satisfies (g) if and only if it has no non-trivial compact
subgroups.

Proof. Let us assume that 8 satisfies (g). Suppose, on the contrary,
that there is a compact subgroup H such that card H > 1. If m is the
normed Haar measure on H, then, by the invariance of m, ms = m for
every s € H, which contradicts (g), unless s is the identity of H.

Conversely, assume that 8 has no non-trivial compact subgroups.
Let us = u for a measure u € § and a point s € §. Let K be a compact
subset of 8 such that u(K) > 1/2. By inequality (1.4) in [2] we have

s"(E'K) > us"(E)+u(E)—1 = 2u(E)—1>0 (n =1,2,...).

It follows from (R) that K~ 'K is compact, so I'(s) = {s,s2,...}
is a compact (monothetic) semigroup. By [11], Lemma 3, its kernel K
is a compact group. From the assumption it follows that K consists of one
element, namely an idempotent ¢. Hence lims" = e (see [11], Lemma 3).
Since us" = uforn =1, 2, ..., by the continuity of convolution we obtain
ue = u. Now, C(u)e is closed (e is an idempotent) and, therefore,

(2.1) C(u)e = C(u).
If @ C(u), then, by (2.1), there exists y € C(x) such that z — ye.
Hence ze = yee = ye = x. Since e is a zero in I'(8), we have
28 = (ve)s = x(e8) = ve = x,
which completes the proof.
Now, we say that S satisfies condition (r) if for any u, 1 € § we have

(ur = p) = (us = p for every s e C(1)).

THEOREM 2.2. 8 satisfies (r) if and only if it has no non-trivial right-
zero subsemigroups.

Proof. Let us assume that S satisfies (r). If M = {e, f} = Sis aright-
zero subsemigroup (e # f), then ud = p for p = 1 = }(e+f) while ue = e
s p. This proves that every right-zero subsemigroup in 8 is a trivial one.

Conversely, let us assume that uA — u for measures u, A € §. Then
also uA®" = u for n =1,2,... and

n
1 2 .
i=1
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<

From (1.4) in [2] we infer, exactly as in the proof of Theorem 2.1,
that IT = {A, A%, ...} is uniformly tight. By Lemma 1.3 we see that limx,
— m, where m € 8 is such that mi = m = m2. By (2.2) and the conti-
nuity of convolution we obtain

(2.3) um = u.

In virtue of Lemma 1.1, C(m), as the support of an idempotent measure,
is a completely simple semigroup. From the assumption it follows that
C(m) is a left group. By Lemma 1.2 we have

(2.4) ma =m for every a € C(m).

From (2.3) and (2.4) we obtain
(2.5) ua = u  for every a e C(m).
Finally, let a € C(m) and ¢ € C(4). Then
as € C(m)C(1) < C(m),
and from (2.5) we obtain

us = (pa)s = u(as) = pu,

I4

which - completes the proof.

Remark 2.1. If 8 is a Hausdorff topological group, then Theorem 2.1
can easily be obtained from the result of Tortrat [14]. The fact that every
topological group satisfies (r) has been observed by Choquet and Deny
in [3], where 8 is assumed to be Abelian, and by Tortrat in [14] for gen-
eral case. Hence, Theorem 2.2 generalizes the above results.

3. Equivalence theorems. Throughout this section, S will denote
(unless stated otherwise) a metric semigroup satisfying (R) and (L) and
having a left-subinvariant metric. We assume also that all considered
random elements are defined on a complete probability space (2, S, P)
and that their distributions are tight (they belong to §). Let (Xp)ns>1
be a sequence of independent random elements (i.r.e.) with values in S.
The distribution of X, is denoted by u,. In the remainder of this paper
we use the notation

Y:ln =Xme+l'°'Xn (mgn)’ Yn = Y?’
and

n __ _.n
Ym _zum;um+1"'aun7 Vp = 71

For further definitions and notation, see [2].

THEOREM 3.1. Let 8 be a metric semigroup satisfying (R) and having
a left subinvariant metric. The following statements are equivalent:
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(i) If Y, =X, X,... X, converges in distribution, then it converges
in probability for every sequence (X,),s, of t.r.e.

(ii) If (X,)n>1 converges compositionally in distribution, then it con-
verges compositionally in probability for every sequence (X,),-, of i.r.e.

(iii) 8 satisfies (g) and (r).

(iv) 8 has mo non-trivial compact subgroups or mon-trivial right-zero
subsemsigroups.

Proof. It is clear that (i) implies (ii). From Theorems 2.1 and 2.2
it follows that (iii) and (iv) are equivalent. Thus, it suffices to prove that (ii)
implies (iv) and that (iii) implies (i).

Suppose that (ii) holds. If S contains a non-trivial compact subgroup H,
then we can construct a sequence (X,),-, of ir.e. having an idempotent
measure m, which is the normed Haar measure on H, as their distribution.
Then (X,),-, is obviously compositionally convergent in law, but C(N,)
= H i3 not a left-zero semigroup, so, by Corollary 3.1 of [2], (X,),>,
does not converge compositionally in probability, which contradicts (ii).
Next, if § contains a non-trivial right-zero subsemigroup M, and ¢, f € M,
e # f, then {e, f} is also a right-zero semigroup. Arguing as above with
m = }(e+f) we also obtain a contradiction with (ii). Thus (ii) implies (iv).

Now, suppose that (iii) holds. Let (X,),-, be & sequence of i.r.e. such
that Y, = X, X,... X, converges in distribution, i.e., limy, = », for
a measure 7, € §. Then, by Lemma 2.2 of [2], ;4 = », for every 1€ 4.
By the assumption, s = x for every x € C(»,) and s € C(1). Hence, xC(A)
= « for every x € C(»,). From Theorem 3.1 of [2] it follows that Y, con-
verges in probability.

THEOREM 3.2. The following statements are equivalent:
) If Y, = X, X,... X, converges in probability, then it converges
with probability one for every sequence (X,),-, of i.r.e.
(ii) If (X,)n>1 converges compositionally in probability, then it converges
compositionally with probability one for every sequence (X,),~, of t.r.e.
(iii) S satisfies (r). -
(iv) S has mo non-trivial right-zero subsemigroups.

Proof. It is obvious that (i) implies (ii). From Theorem 2.2 it follows
that (iii) and (iv) are equivalent.

Now, suppose that (ii) holds. If there exists a non-trivial right-zero
subsemigroup M = {e, f} = 8, then we can construct a sequence (X,),-,
of ir.e., taking values in M, which converges to e¢ in probability but not
with probability one. Since Y} = X, for every k < n, the sequence (X,),-,
converges compositionally in probability but not with probability one.
Hence (ii) implies (iv).

Next, let us assume that (iv) holds. Let (X,),., be a sequence of
i.r.e. such that ¥, = X, X, ... X, converges in probability to an r.e. ¥,.

8 — Colloquium Mathematicum XXXVII.2
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Let », be the distribution of ¥,. By Theorem 3.1 of [2] we have
(3.1) C(A) ca 'z =H, for every xeC(,)

(H, = '# = {8; 28 = «}). From (R) it follows that H, is compact,
thus it contains the completely simple kernel K. Since H, is left unitary,
from Lemma 1.4 it follows that it is a unitary subsemigroup of 8§, i.e.,
H,H,' < H,. Hence, by (3.1) we obtain

C(A)0(A)™ < H,H;' < H, for every xeC(v,).

By Corollary 4.1 of [2], Y, converges with probability one.

COROLLARY 3.1. Suppose that S does mot contain any non-trivial
compact subgroup or any non-trivial right-zero subsemigroup. If (X,),-, 18
a sequence of i.r.e. such that Y, = X, X, ... X, -converges in distribution,
then it converges also with probability one.

Remark 3.1. Theorem 3.1 has been proved, with 8 being assumed
a locally ecompact group, by several authors: Csiszar [5], Galmarino [6],
Heyer [7] and others. Theorem 3.2 has been proved by Loynes [8] for S
being a (Hausdorff) topological group. It is clear that our results hold
without any additional assumption concerning (2, S, P) whenever 8§
is separable (see the final remark in [2]).
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