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Taylor [6] recently proved, among other results, that an equational
class of finitary algebras contains enough equationally compact algebras
iff the subdirectly irreducible algebras in the class constitute, up to iso-
morphism, a set. This note* provides a negative answer to the natural
question whether the same equivalence holds for equational classes of
infinitary algebras by exhibiting examples in which there are, up to
isomorphism, only one subdirectly irreducible algebra in the class but
mo non-trivial equationally compact algebras at all. The same examples,
a8 a by-product, also provide cases where Birkhoff’s Subdirect Represen-
tation Theorem, the well-known fundamental result concerning equational
classes of finitary algebras, is no longer valid.

We note that even in the infinitary case the existence of enough
equationally compact algebras, i.e. the fact that every algebra in the
given equational class can be embedded in an equationally compact
algebra belonging to the class, implies a bound on the cardinality of the
subdirectly irreducible algebras in the class, and hence the stated small-
ness condition (cf. Banaschewski and Nelson [1]). In the finitary case,
the reverse implication is relatively trivial. The restriction on the sub-
directly irreducible algebras of the class provides for maximal essential
extensions of these which, in turn, are readily seen to be equationally
compact; Birkhoff’s Subdirect Representation Theorem and the equa-
tional compactness of products of equationally compact algebras (cf.
Mycielski [4]) then provides enough equationally compact algebras. The
crucial steps of this argument depend, on the surface at least, heavily
on the assumption of finitariness, and the work presented here grew
from an attempt to understand how essential this assumption really
is; our examples, which are in a sense extreme even though only at most
N,-ary operations are needed, provide some insight into this point.

To begin with, recall the familiar notions and facts. For any algebra A
(in an arbitrary equational class), an extension B of A is called a free
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extension of A by the set X iff X < B and B is generated by 4 and X
such that, for any extension C of 4, any set map X —C extends (necessarily
uniquely) to a homomorphism B — C over A, i.e. mapping A identically.
Given any A and set X it is clear that such extensions exist; in the follow-
ing A[X] will always be an extension of A of this type. Now, an extension
B of A is called pure iff for any pairs (u,, v,), ..., (%,,v,) in A[X} for
which one has a homomorphism f: A[X] — B over A which equalizes
these pairs, i.e. f(u,) = f(v;) for all k =1, ..., n, there also exists a homo-
morphism g: A[X] - A over A equalizing these pairs. An algebra A is
called equationally compact iff a set S of pairs in A[X] can be equalized
by a homomorphism A[X] — A over A whenever this is the case for each
of its finite subsets. This condition implies, for arbitrary algebras, that A
1s a retract of every pure extension B 2 A, i.e. there exists a homomor-
phism B — A over A, and for finitary algebras the converse also holds (cf.
Weglorz [7]). An algebra which is a retract of every extension is called
an absolute retract.

1. BN-algebras. Our first example is given by what we shall call
BN-algebras, these being the algebras A = (X, (fy)), U extending over
the set SN of all ultrafilters on the set N of natural numbers, each fy
being a map XV — X, satisfying the following conditions, where Us = fy(0)
for any U and any sequence o:

(A1) If ¢: N — X is constant with a value &, then Us = a for all .

(A2) For any U, if o, 7: N — X coincide on some member of U, then
Uo = Ux.

(A3) ForallY, £: N —» fN, and o: N — X, (éx0) = lim & (U)o, where
Exo: N — X is defined by (¢é*0) (k) = &(k)o, ke N, and the limit is taken
in the usual topology of SN.

We note that these conditions (which can evidently be described
by equations) have a topological origin as follows:

If O is any regular Hausdorff topology on a set X such that every
ultrafilter U on X of countable type, i.e. containing a countable subset of X,
converges (with respect to ), then, for any UefN and ¢: N — X, the
image ultrafilter basis o(U) on X converges, so that we can put We =
lime (M) = (), where o: BN — X is the unique continuous map such
that o = on, #: N — BN the natural map which assigns to each keN
the ultrafilter fixed at %k, the existence of o resulting from the regularity
of O by a fundamental proposition on the continuous extension of contin-
uous maps (cf. Bourbaki [2], p. 81). The X,-ary operations thus obtained
on X clearly satisfy conditions (Al) and (A2); regarding (A3) one has

U(&*+0) = lim(&*o) (U) = Lm {{&(k)olkeV} V U}
= limof{(&(V)) | Ve U} =limog(U) = ¢(lim&(U)) = Lim £(U)a.
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The algebra obtained in this manner will be called the SN-algebra
of the given space.

A particular instance of such algebras is obtained as follows. For
any set X, let f,X be the subspace of fX consisting of all ultrafilters
on X of countable type. Then, for any countable 2 < §,X and any ultra-
filter @ on X, one has a countable Sg = X in B for each B 2 so that the
countable set 8§ = (JSg belongs to all BeX. Now, for MW =limP (in
pX), one knows from the properties of the topology of X that I =2 MV
(BeX); thus one has S ¢ W, and hence W ef, X. As a result we have the
pN-algebra of the space f, X. The significance of these algebras is described
in

LEMMA 1. The fN-algebra of f, X is a free fN-algebra with basis n(X).

Proof. First, we prove this for ;N = gN. For any ¢: N — A, set
map into (the underlying set of) a fN-algebra A,let h: BN — A be defined
by h(U) = Uo. Then, for any keN, h(n(k)) = n(k)o = o(k) by (A2)
and (Al), and hence hy = o, as required. Now, for any £: N — 8N and 2,
one has h(lim&(U)) =lim&QU)o = U(&*o) by (A3), and here (&*0)(k)
= §(k)o = h(&(k)) so that &xo = hé. For the algebra in the question
this reads h(W&) = U (hE), i.e. b is a homomorphism such that hn = o.
The uniqueness of h follows from the fact that n(N) is a set of fN-algebra
generators.

Now, consider an arbitrary g,X, taking X to be infinite since there
i8 nothing to prove in the finite case. From general principles we know
there exists a free fN-algebra FX = X with basis X, and thus also a ho-
momorphism h: FX —» $,X with h(2) = n(x). Then, for any distinct
a,be FX there exists a countable subset ¥ = X such that a,beA, the
subalgebra of FX generated by Y, since the operations all have arity N,.
A is free with basis Y, and % induces an onto homomorphism A — Y ;
however, 8Y is also free with basis (Y), and this homomorphism induces
a one-one onto map between the bases of these free algebras, hence is
an isomorphism. In particular, h(a) # h(b), and, therefore, 2 is an iso-
morphism.

Any algebra, of any type, determines on its underlying set X the
closure system of (the underlying sets of) its subalgebras and the closure
operator I' associated with this. For the gN-algebras, one has I'QO = @
since there are no 0-ary operations; beyond that, though, the operators I’
are closure operators of T')-topologies, as is expressed in

LemMMA 2. In any fN-algebra, the singletons and the finite unions of
subalgebras are subalgebras.

Proof. The first part follows directly from (Al). As to the second,
let B and C be subalgebras of a g N-algebra A and consider any ¢: N—BUC;
then N = ¢7}(B)Uo~!(C), and any U ¢8N contains one of these two sets,
say o '(B)el. Then, let v: N—>B be such that it coincides with ¢ on
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o~ !(B);from (A2) one then has We = Ur and Uz e B since B is a subalgebra.
In general, this says that UoeBUC, i.e. BU( is a subalgebra.

CorOLLARY 1. For BN-algebras, finite coproducts are disjoint unions.

Proof. We know the coproduct AxB, with canonical maps4: A—AxB
and j: B - AxB, exists for any A and B. Then, by Lemma 2, AxB
= ¢(A4)Vj(B). Moreover, since any non-trivial fN-algebra contains disjoint
subalgebras by Lemma 2 (e.g. different singletons), one has 7(4)Nj(B)
= @. Finally, since there exist algebras C into which both A and B can
be embedded, e.g. C = A x B with A x {b}, {a} X B = C, 4 and j are embed-
dings. This shows AxB is the disjoint union of subalgebras isomorphic
to A and B, respectively.

COROLLARY 2. Any two finite fN-algebras of the same cardinality are
1somorphic.

Proof. They are coproducts of the same number of singleton algebras.

CoROLLARY 3. For fN-algebras, pushouts preserve monomorphisms.

Proof. For any equational class of algebras, given homomorphisms
f: A—> B and g: A — C, the pushout

4—71 .8

|

v

is always constructed by taking Bx(C modulo a suitable congruence 6,
and 4 and v are the homomorphisms

C-5>BuC>D=(Bx0))6 and B->Bx¢>D,

respectively, where ¢ and j are the canonical maps and » is the quotient
map. Here, one has by the lemma that

AU{(f(w)y g(w))l ‘v‘Alul(g("”)’f(w)) I ‘v‘A}’

4 the diagonal of BxC, is already a congruence: each of the three sets
occurring is a subalgebra of (BxC)? hence the union is, and is otherwise
an equivalence. It follows that this is the required relation 6. Now, the
restriction of 6 to C is clearly the identity relation, and hence » is a mono-
morphism — no matter, actually, whether f is one or not.

We now turn to the discussion of equational compactness for SN-
algebras.

Let A be any fN-algebra and § a set of pairs in A[X]. Note that,
actually, A[X] = AxFX, FX the fN-algebra of 8,X; hence, these pairs
are of the form (a, b), (a, U) or (B, W), where a, bed and U, B, WeFX.
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From the point of view of equalizing such pairs by homomorphisms
over A, moreover, the pairs (a, ) with @, b e A can be disregarded; hence,
we consider 8 not to contain any of these. Let X, be the set of those U
for which there exists a sequence U;, U,, ..., U, = U for which (a, U,) eS8
and (U;, W;,,) or (U;,,, U;) belongs to 8 for all ¢+ =1, ..., n—1. For a fi-
nite 8 one then has

LEMMA 3. S can be equalized by a homomorphism h: AvFX — B over
A, B any extension of A, iff all X, are disjoint.

Proof. If there exists such an h, then a = h(U) for each UelZ,,
so the condition then holds. Conversely, given this condition, there exists
a decomposition X = EU|(JE, of X such that E,e ) for all U X, and
E B for the remaining B ¢ FX occurring in 8. This results from the prop-
erties of the topology of X and the fact that there is only a finite number
of finite, hence closed, subsets of X involved. Now, one can define a ho-
momorphism g¢g: FX — B by putting g(x) =a for veE, and g(z) =¢
arbitrary for z ¢ . Then, for each UeZX,, take {: N — E, and B 8N such
that U = &(B) = Bé&; this implies g(U) = B(gf) = @, and, similarly,
g(W) = ¢ for all W occurring in § not belonging to X,. It follows from
this that g together with the identity map on A provides the desired
homomorphism 5.

COROLLARY 4. Ewvery extension of BN-algebras is pure.

Proof. The condition for the existence of & does not depend on B.

PRrOPOSITION 1. There are only trivial equationally compact BN-algebras.

Proof. Let A be such a BN-algebra and take any elements a, beA.
Then, consider the set § of pairs in Ax8N, where (a, ) eS for all fixed
ultrafilters U ¢ SN and (b, B) S for all B¢BN. By Lemma 3 one has that
every finite subset of § can be equalized by a homomorphism AxgN — A
over A, and thus there exists a homomorphism h: Ax8N — 4 over A
equalizing all pairs in 8. This, however, means that » is constant, with
value a, on the generating set n(N) of BN (as fN-algebra), hence h is
constant, and, therefore, a = b.

On the other hand, concerning subdirect irreducibility, we have

PROPOSITION 2. The subdirectly irreducible pN-algebras are exactly
the two-element algebras, and thus, up to isomorphism, there is only one
subdirectly irreducible pN-algebra.

Proof. Consider any gN-algebra A with three distinct elements a, b
and ¢. It follows from Lemma 2 that @ = 4U{(a, d), (b,a)} and A4 =
4u{(d, c), (¢, b)}, 4 the diagonal of 4 x A, are congruences on A; and
evidently 4 = @nA4 and @, A > 4. This shows A is not subdirectly irre-
ducible, and the converse is trivial.

CoROLLARY 5. Birkhoff’s Subdirect Representation Theorem fails in
the class of BN-algebras.
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Proof. It has to be shown that there are gN-algebras which cannot
be embedded into a product of two-element gN-algebras. Let A = [[A4,
with projections p,: A — A, be such a product. Now, for the topologies
given by the subalgebra closure operators, the p, are, as homomorphisms
between BN-algebras, continuous maps; thus the topology in question
on A is finer than the product topology given by the discrete topologies
on the two-element algebras 4,. It follows that any subalgebra B < A,
whose subalgebra topology is compact, is actually a subspace, in that
topology, with respect to the product topology on A, since compact
Hausdortf topologies are minimal Hausdorff. Consequently, a gN-algebra
which is compact Hausdorff in its subalgebra topology and embeddable
into a product of two-element algebras must be zero-dimensional in
that topology. It follows that the fN-algebra of any connected second
countable compact Hausdorff space cannot be embedded into any such

product.

Remark 1. The class of all compact Hausdorff spaces, though it
does not constitute an equational class of (infinitary) algebras in the
usual sense (which assumes only a set of operations) is still rather like
an equational class (cf. Linton [3], p. 84-94), and the considered questions
can be raised for it; the answers are the same: there are no non-trivial
equationally-compact compact Hausdorff spaces, and the only subdirectly
irreducible ones are the two-element spaces. Again, the same holds if one
considers the counterparts of fN-algebras for any cardinal greater than
N,; these will be equational classes, the equations being the analogues
of conditions (Al)-(A3).

Remark 2. For gN-algebras, Corollary 3 of Lemma 2 implies that
injectivity is the same as being an absolute retract, and the same holds
for compact Hausdorff spaces. For the latter, of course, one has that
there are enough injectives since the unit interval is injective (Tietze’s
Extension Theorem), and every compact Hausdorff space is embeddable
into some power thereof. We know nothing about the existence of injective
BN-algebras; if there are non-trivial such algebras, these would show
that, for infinitary algebras, being a retract of every pure extension
(which here means: every extension, by the Corollary 4) does not imply
equational compactness, in contrast with the finitary case.

Remark 3. Since all extensions of fN-algebras are pure, the two-
element algebras are the only pure-irreducible ones, and hence there is
only a set of these, up to isomorphism, whereas no non-trivial §N-algebra
has an equationally compact pure extension. This shows that Theorem 3.12
of Taylor [6] also fails in the infinitary case.

Remark 4. It is easy to single out the basic features of g N-algebras
which enter into the proofs of Propositions 1 and 2.



EQUATIONAL COMPACTNESS 203

Let A be any equational class of infinitary algebras satisfying the
following conditions:

(i) For any A ¢A, the singletons in A are subalgebras of 4.

(ii) For any A €A, the union of any two subalgebras of 4 is a sub-
algebra of A.

(iii) If A €4 is a free algebra in A with basis X, then, for any finitely
many elements a,,...,a,e¢A, there exists a decomposition X = X,u
U... VX, of X such that a; belongs to the subalgebra of A generated
by X, for each 1.

Then, A has only trivial equationally compact algebras, and its
subdirectly irreducible algebras are just the (mutually isomorphic) two-
element algebras.

2. Boolean m-algebras. The second example is given by the equa-
tional class of m-complete Boolean algebras for a fixed infinite cardinal m,
the operations being the usual finitary Boolean operations (including 0
and 1 as 0-ary operations) together with the two m-ary operations which
assign to each oe¢A™ the meet /\ ¢ and the join \/g, respectively, and the
equations being the obvious ones. We refer to these algebras as Boolean
m-algedbras.

Recall that an algebra A is weakly equationally compact iff a set
of pairs in a free algebra (in the class A is considered in) can be equalized
by a homomorphism into A, whenever this is the case for each of its
finite subsets. Evidently, weak equational compactness is implied by
equational compactness, though the converse does not hold, as is shown
by the class of Boolean algebras where every algebra is weakly equation-
ally compact but the equationally compact algebras are exactly the
complete ones (cf. Weglorz [7]).

The situation is quite different for Boolean m-algebras:

PROPOSITION 3. There are no non-trivial weakly equationally compact
Boolean m-algebras.

Proof. Let A be such an algebra and F a free Boolean m-algebra
with infinite basis X whose cardinal is greater than the number of
elements of A. Then, let S be the set of all pairs in F of the form (0, A o)
and (1, \/o) for those o¢X™ whose images contain infinitely many ele-
ments. Now, given any such oy, ..., 0, with images X,,..., X,, choose
xz;eX; for each ¢, and define a homomorphism h: F — A by putting h(z;)
= 1 for each i, and h(x) = 0 for the other x ¢ X. Since each X; —{z,, ..., 2,}
is non-void, it follows that k(Ao;) = Aho; = 0, whereas h(\/g;) =1 by
the choice of the z;, and hence every finite subset of S can be equalized
by a homomorphism F — 4. Consequently, there exists a homomorphism
g: F — A equalizing all pairs in 8. Now, by the choice of the size of X, ¢
must be constant on some infinite subset X, of X, and thus one has pairs
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(0, Ao) and (1, Vo) in S for which the image of o is contained in X,; this
implies \/goe = Ago, and hence 0 =1 in 4, i.e. A is trivial.

PRrOPOSITION 4. The subdirectly irreducible Boolean m-algebras are
exactly the two-element algebras.

Proof. Clearly, the two-element Boolean m-algebras are subdirectly
irreducible. Conversely, let A be any Boolean m-algebra which has an
element aeA distinct from 0 and 1. Then, the intervals [0, a] and [a, 1]
in A are again Boolean m-algebras, and the maps f: 4 — [0,a] and
g: A —[a,1], given by f(x) =aAx and g¢g(r) = ava, are Boolean m-
algebra homomorphisms by the distributivity laws which hold in any-
Boolean algebra with respect to any existing joins and meets (cf. Sikorski
[6], p. 55). Now, the kernels of f and g (i.e. the ideals mapped to zero)
are given by the conditions anx = 0 and ava = a, respectively, which
shows their intersection is zero. Since neither kernel itself is zero by the
choice of a, it follows that A is not subdirectly irreducible.

COROLLARY 6. Birkhoff’s Subdirect Representation Theorem fails in
the class of Boolean m-algebras.

Proof. To be a Boolean m-subalgebra of a product of two-element
algebras amounts to being isomorphic to an m-field of sets, and, for any
infinite cardinal m, there are m-complete Boolean algebras which do not
have this property (cf. Sikorski [5], p. 79).

These arguments also work for suitable distributive lattices. We call
a distributive m-lattice, for a given infinite cardinal m, any m-complete
distributive lattice with the binary and m-ary operations of meet and
join, subject to the usual equations together with the m-ary distribution
laws #A\V o = VoAao(i) and v Ao = Awxva(i). The proof of Proposi-
tion 3 can then be used, with two arbitrary elements a and b such that
a < b in place of 0 and 1, to show that equational compactness implies
a = b. Further, as in the proof of Proposition 4, one considers the maps
A - [<«,a]land A — [a, —]as given there, these being m-lattice homomor-
phisms in view of the m-ary distribution laws. Now, the intersection of
the congruences on A determined, in the usual way, by these homomor-
phisms is the identity relation since anz = aAny and ava = avy imply
x = y in every distributive lattice. Moreover, if A has more than two
elements, then there also exist a,b,ced with b < a < ¢; in this case,
since anc = ana and avb = ava, both these congruences are non-trivial,
and hence A is not subdirectly irreducible.

This together with the fact that the underlying distributive m-lattice
of a Boolean m-algebra which is not isomorphic to an m-field of sets is
itself not isomorphic to an m-ring of sets proves

PROPOSITION 5. There are no non-trivial equationally compact distrib-
utive m-lattices, the subdirectly irreducible distributive m-lattices are exactly
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the two-element lattices, and Birkhoff’s Subdirect Representation Theorem
fails in the class of distributive m-lattices.

In conclusion we note that, in contrast with the situation for Boolean
m-algebras, all distributive m-lattices are weakly equationally compact —
an obvious consequence of the fact that they all have one-element sub-
algebras.
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