A necessary and sufficient condition for the existence of a bundle in differential spaces

by B. WALCZAK (Łódź)

Abstract. The notion of a differential space is due to R. Sikorski and S. Mac Lane who, working quite independently, introduced it in their works [1] and [2]. In the present paper a necessary and sufficient condition for the existance of a bundle in such a space is given, Steenrod's definition [3] of a bundle being followed. It occurred that the main difficulty while translating the construction of a bundle from the category of topological spaces and topological groups into the category of differential spaces and generalized Lie groups was to find conditions determining the division of a certain differential space by a suitable equivalence relation.

Preliminaries. Let $\mathscr C$ be a non-empty set of real functions defined on M. Following R. Sikorski we shall denote by $\tau_{\mathscr C}$ the weakest topology on M for which all functions $\alpha \in \mathscr C$ are continuous.

A set \mathscr{C} of real functions defined on M is said to be a differential structure on M [2], if:

(*) The set $\mathscr C$ is closed with respect to localization, i.e. $\mathscr C = \mathscr C_M$, where $\mathscr C_M$ is the set of all functions $a \colon M \to R$ such that for any point $p \in M$ there exists a set $A \in \tau_{\mathscr C}$ and $\beta \in \mathscr C$ with $\beta | A = a | A$

and

(**) The set & is closed with respect to superposition with smooth functions, i.e. the following condition is satisfied:

if
$$\omega \in \mathscr{E}_n$$
 and $\varphi_1, \ldots, \varphi_n \in \mathscr{C}$, then $\omega(\varphi_1(\cdot), \ldots, \varphi_n(\cdot)) \in \mathscr{C}$,

where \mathscr{E}_n is the set of real functions of class $\mathscr{C}^n(\mathbb{R}^n)$.

By a differential space M we shall understand a couple $(M, \mathcal{F}(M))$, where $\mathcal{F}(M)$ is a differential structure on M [2]. M_A will denote the differential space $(A, (\mathcal{F}(M))_A)$, where $A \subset M$.

Let M and N be differential spaces. We say that f maps smoothly

the differential space M into the differential space N, in symbols

$$f: M \rightarrow N$$

if $f: M \to N$ and for an arbitrary function $a \in \mathcal{F}(N)$ we have $a \circ f \in \mathcal{F}(M)$. The mapping $f: M \to N$ is called a *diffeomorphism* if f is a one-one mapping of the set M onto N and $f^{-1}: N \to M$.

Let M be a differential space and let $f: M \to N$. For an arbitrary real function β mapping the set N into R we put $f^*(\beta) = \beta \circ f$. Denoting by \mathbb{R}^N the set of all such functions β , we obtain a mapping $f^*: \mathbb{R}^N \to \mathbb{R}^M$.

It can be proved (cf. [4]) that $f^{*-1}[\mathcal{F}(M)]$ is a differential structure on N; this structure is called the *structure coinduced by the mapping* f from a differential space M. It is also proved in [4] that $f^{*-1}[\mathcal{F}(M)]$ is the greatest of differential structures on N for which the mapping f is smooth.

Let $M = (M, \mathscr{F}(M))$ and $N = (N, \mathscr{F}(N))$ be non-empty differential spaces. Let $\mathscr{F}(M) \times \mathscr{F}(N)$ denote the smallest differential structure on $M \times N$ containing all functions $a \circ \pi_1$, $\beta \circ \pi_2$, where $a \in \mathscr{F}(M)$, $\beta \in \mathscr{F}(N)$ and $\pi_1 \colon M \times N \to M$ and $\pi_2 \colon M \times N \to N$ are the natural projections.

The differential space $(M \times N, \mathscr{F}(M) \times \mathscr{F}(N))$ is called the *product* of the differential spaces $(M, \mathscr{F}(M))$ and $(N, \mathscr{F}(N))$ and is denoted by $M \times N$.

Let $G = (G, \mathscr{F}(G))$ be a differential space and let (G, \odot) be a group. If the mappings:

$$(1) \qquad ((g_1, g_2) \mapsto g_1 \odot g_2) \colon G \times G \to G$$

and

$$(g \mapsto g^{-1}): G \rightarrow G$$

are smooth, i.e. $((g_1, g_2) \mapsto g_1 \odot g_2) : G \times G \to G$ and $(g \mapsto g^{-1}) : G \to G$, then the set G together with the differential structure $\mathscr{F}(G)$ and the group structure \odot is called a *generalized Lie group*.

Let G be a generalized Lie group and let $F = (F, \mathcal{F}(F))$ be a differential space. G will be called a group of transformations of the space F acting smoothly on F by means of η if:

$$\eta\colon G\times F\to F,$$

(4)
$$\eta(e, y) = y$$
 for $y \in F$, where e is the unit of the group G ,

(5)
$$\eta(g_1 \odot g_2, y) = \eta(g_1, \eta(g_2, y))$$
 for $y \in F$, $g_1, g_2 \in G$.

We shall say that G acts effectively on F if the equality $\eta(g, y) = y$ holding for all $y \in F$ implies g = e. In the sequel we shall use the notation $g \cdot y$ instead of $\eta(g, y)$.

A bundle is a system of the form

$$\mathscr{B} = (B, \pi, M, G, \cdot, (\varphi_i; i \in I)),$$

where B, M, F are differential spaces, $\pi \colon B \to M$, G is a generalized Lie group acting effectively on F by means of an operation \cdot , $(V_i; i \in I)$ is an open covering of the space M and $(\varphi_i; i \in I)$ is a family of diffeomorphisms satisfying the following conditions:

(a)
$$\varphi_i: (V_i, \mathscr{F}(M)_{V_i}) \times F \rightarrow (\pi^{-1}[V_i], \mathscr{F}(B)_{\pi^{-1}[V_i]});$$

(b)
$$\pi(\varphi_i(p,y)) = p$$
 for $p \in V_i$, $y \in F$;

(c) For an arbitrary $i \in I$ and for any $p \in V_i$ the mapping

$$\varphi_{ip}\colon F\to B_{n^{-1}[\{p\}]}$$

defined by the formula

$$\varphi_{ip}(y) = \varphi_i(p, y) \quad \text{for } y \in F$$

is a diffeomorphism;

(d) For arbitrary elements $i, j \in I$ and $p \in V_i \cap V_j$ the mapping defined by the formula

$$\varphi_{ij}(p)\cdot y = \varphi_{i,p}^{-1}(\varphi_{i,p}(y))$$

is smooth, i.e.

$$\varphi_{ij} \colon M_{V_i \cap V_j} \rightarrow G.$$

From the definition of φ_{ij} it follows that for arbitrary $i, j, k \in I$ and $p \in V_i \cap V_j \cap V_k$

(7)
$$\varphi_{kj}(p)\odot\varphi_{ji}(p)=\varphi_{ki}(p).$$

Putting in (7) i = j = k, we see that $\varphi_{ii}(p)$ is the unity of the group, and further, putting i = k, we get

$$\varphi_{jk}(\boldsymbol{p}) = (\varphi_{kj}(\boldsymbol{p}))^{-1}.$$

2. A necessary and sufficient condition for the existence of a bundle. Let $M = (M, \mathcal{F}(M))$, $F = (F, \mathcal{F}(F))$ be differential spaces and let $(V_i; i \in I)$ be an open covering of the space M. Let G be a generalized Lie group acting effectively on F by means of an operation \cdot . Further, let $(\varphi_{ij}; i, j \in I)$ be an indexed family of functions satisfying the conditions:

(8)
$$\varphi_{ij} \colon M_{V_i \cap V_j} \to G,$$

(9)
$$\varphi_{ij}(p) \odot \varphi_{jk}(p) = \varphi_{ik}(p) \quad \text{for } p \in V_i \cap V_j \cap V_k.$$

For an arbitrary $i \in I$ we shall consider the differential space

(10)
$$i^* = (\{i\}, \{c_i; c \in E\}), \text{ where } c_i(t) = c \text{ for } t = i.$$

Let T be the subset of $M \times F \times I$ defined by

$$T = \bigcup_{i \in I} V_i \times F \times \{i\};$$

we define a differential space T by putting

$$T = \bigoplus_{i \in I} M_{r_i} \times F \times i^{\bullet}.$$

In the set T we now introduce a relation $\bar{\varphi}$:

$$(13) (p, y, i) \overline{\varphi}(p', y', j) \Leftrightarrow (p = p' \land \varphi_{ii}(p) \cdot y = y' \land i, j \in I).$$

It is easy to show that the relation defined above is an equivalence.

Let B denote the set of all cosets modulo the relation $\overline{\varphi}$ in the set T, i.e.

(14)
$$B = T/\overline{\varphi} = \{[t]_{\overline{\varphi}}; t \in T\}.$$

Let $\check{\varphi}$ be the mapping of the set T into the set B defined as follows:

(15)
$$\dot{\varphi}(t) = [t]_{\bar{\varphi}} \quad \text{for } t \in T.$$

It can easily be verified that

$$(16) \quad \check{\varphi}^{*-1}[\mathscr{F}(\bigoplus_{k\in I} M_{\mathscr{V}_k} \times F \times k^*)]_{\check{\varphi}[\mathscr{V}_i \times F \times \{i\}]}^{\bullet} \\ \subset (\check{\varphi}|_{\mathscr{V}_i \times F \times \{i\}})^{*-1}[\mathscr{F}(M_{\mathscr{V}_i} \times F \times i^*)],$$

where $\check{\varphi}^{*-1}[\mathscr{F}(\bigoplus_{k\in I}M_{\mathscr{V}_k}\times F\times k^*)]$ denotes the structure coinduced from the differential space T by the mapping $\check{\varphi}$.

We shall prove the following

THEOREM 2.1. If M, F are differential spaces, $(V_i; i \in I)$ is an open covering of the space M, G is a generalized Lie group acting effectively on F by means of an operation \cdot and $(\varphi_{ij}; i, j \in I)$ is an indexed family of functions satisfying conditions (8) and (9), then in order that there exist a bundle $\mathscr{B} = (B, \pi, M, F, G, \cdot, (\varphi_i; i \in I))$ such that

(17)
$$\varphi_{ij}(p) \cdot y = \varphi_{i,p}^{-1}(\varphi_{j,p}(y)) \quad \text{for } p \in V_i^1 \cap V_j, \ y \in F$$

it is necessary and sufficient that the condition

$$(18) \quad \check{\varphi}^{\bullet-1}[\mathscr{F}(\underset{k\in I}{\oplus} M_{\mathscr{V}_{k}} \times F \times k^{\bullet})]_{\check{\varphi}[\mathscr{V}_{i} \times F \times \{i\}]} \\ \subset (\check{\varphi}|_{\mathscr{V}_{i} \times F \times \{i\}})^{*-1}[\mathscr{F}(M_{\mathscr{V}_{i}} \times F \times i^{\bullet})]$$

be satisfied.

Proof. Assume that the differential spaces M, F are given. Let $(V_i; i \in I)$ be an open covering of the space M, G a generalized Lie group acting effectively on F by means of \cdot and let $(\varphi_{ij}; i, j \in I)$ be a family

of functions satisfying (8) and (9). Assume, moreover, that the mapping $\check{\phi}$ defined by (15) satisfies condition (18). Let B be a differential space defined by

$$(19) B = (\mathbf{B}, \mathscr{F}(B)),$$

where $B = T/\bar{\varphi}$ and $\mathscr{F}(B) = \check{\varphi}^{*-1}[\mathscr{F}(T)]$.

Define a function $\pi: B \rightarrow M$ putting

(20)
$$\pi(\check{\varphi}(p,y,i)) = p \quad \text{for } (p,y,i) \in V_i \times F \times \{i\}.$$

Assume that $\varphi(p, y, i) = \check{\varphi}(p_1, y_1, j)$. Then $(p, y, i)\bar{\varphi}(p_1, y_1, j)$. In accordance with the definition of $\bar{\varphi}$ we obtain $p = p_1$. Therefore the mapping π is well defined.

We now show that π is smooth. Consider the function $\lambda\colon T\to M$ defined by the formula $\lambda(p,y,i)=p$ for $(p,y,i)\in T$. Since the family $(V_i\times F\times \{i\};\ i\in I)$ is an open covering of the space T and $\lambda\mid_{V_i\times F\times \{i\}}\colon M_{V_i}\times F\times i^*\to M$ for $i\in I$, we infer that λ maps smoothly T into M. From the facts that the differential structure $\mathscr{F}(B)$ is coinduced from the differential space T by the mapping $\check{\varphi}$ and $\pi\circ\check{\varphi}=\lambda$ we obtain the smoothness of π .

Let $(\varphi_i; i \in I)$ be an indexed family of functions defined as follows: for an arbitrary $i \in I$ we put

(21)
$$\varphi_i(p,y) = \check{\varphi}(p,y,i) \quad \text{for } p \in V_i, y \in F.$$

The smoothness of $\check{\varphi}$ implies the smoothness if the mapping φ_i . Thus

$$\varphi_i: M_{V_i} \times F \rightarrow B$$
.

We shall show that $\varphi_i[V_i \times F] = \pi^{-1}[V_i]$. Let $b \in \varphi_i[V_i \times F]$. Thus there exists a point $(p, y) \in V_i \times F$ such that $b = \varphi_i(p, y)$. From (21) and (20) it follows that $\pi(b) = p$. Since $p \in V_i$, we have $b \in \pi^{-1}[V_i]$. Thus $\varphi_i[V_i \times F] \subset \pi^{-1}[V_i]$. Let now $b = \check{\varphi}(p, y, k)$ and $b \in \pi^{-1}[V_i]$. Then $\pi(b) = p \in V_i$. From (20) it follows that $\pi(b) = p$ and $p \in V_k$. Hence $p \in V_i \cap V_k$. Let us put $y' = \varphi_{ik}(p) \cdot y$. By (13) we obtain $(p, y, k) \bar{\varphi}(p, \varphi_{ik}(p) \cdot y, i)$. Hence $b = \check{\varphi}(p, \varphi_{ik}(p) \cdot y, i)$. Using (21) we jet $b = \varphi_i(p, y')$. Since $p \in V_i \cap V_k$ and $y' \in F$, we have $b \in \varphi_i[V_i \times F]$. Thus $\pi^{-1}[V_i] \subset \varphi_i[V_i \times F]$. We prove now that φ_i defined in (21) is a one-one mapping. To this end we assume that $\varphi_i(p, y) = \varphi_i(p', y')$ for $p, p' \in V_i$ and $p \in F$. Then $\check{\varphi}(p, y, i) = \check{\varphi}(p', y', i)$, hence $p \in V_i \cap V_i$ and so $p \in V_i$. Therefore $p \in V_i$ is a smooth one-one mapping of the differential space $p \in V_i \cap V_i \cap V_i \cap V_i$. We are going to show that this mapping is smooth.

From the assumption and (16) it follows that

$$(22) \quad \check{\varphi}^{*-1}[\mathscr{F}(\bigoplus_{k\in I} M_{\mathscr{V}_k} \times F \times k^*)]_{\check{\varphi}[\mathscr{V}_i \times F \times \{i\}]} \\ = (\check{\varphi}|_{\mathscr{V}_i \times F \times \{i\}})^{*-1}[\mathscr{F}(M_{\mathscr{V}_i} \times F \times i^*)].$$

Thus the differential space $B_{\check{\varphi}[V_i \times F \times \{i\}]}$ has the differential structure identical with the one coinduced by the mapping $\check{\varphi}|_{V_i \times F \times \{i\}}$ from the differential space $M_{V_i} \times F \times i^*$. Let us put

$$(23) r_i(p, y, i) = (p, y) \text{for } (p, y, i) \in V_i \times F \times \{i\}.$$

Clearly r_i : $M_{\mathcal{V}_i} \times F \times i^* \to M_{\mathcal{V}_i} \times F$. Since $\varphi_i^{-1} \circ \check{\varphi} \mid_{\mathcal{V}_i \times F \times \{i\}} = r_i$, and taking (22) into account, we see that the mapping φ_i^{-1} maps smoothly the differential space $B_{\pi^{-1}[\mathcal{V}_i]}$ onto the differential space $M_{\mathcal{V}_i} \times F$. Hence φ_i is a diffeomorphism for any $i \in I$.

Let p be a fixed point in $V_i \cap V_j$. Consider the mapping $\varphi_{j,p}^{-1} \circ \varphi_{i,p}$: $F \to F$, where $\varphi_{i,p}$, $\varphi_{j,p}$ are defined by (6). If $y' = \varphi_{j,p}^{-1}(\varphi_{i,p}(y))$, then $\varphi_{j,p}(y') = \varphi_{i,p}(y)$; hence $\varphi_j(p,y') = \varphi_i(p,y)$ and so $(p,y',j)\overline{\varphi}(p,y,i)$. Therefore for an arbitrary $y \in F$ the equality $\varphi_{ji}(p) \cdot y = \varphi_{j,p}^{-1}(\varphi_{ip}(y))$ holds. Thus we have shown that under the given assumptions the system $\mathscr{B} = (B, \pi, M, F, G, \cdot, (\varphi_i; i \in I))$ is a bundle.

Now assume that there are given: differential spaces M, F, an open covering $(V_i; i \in I)$ of the space M, a generalized Lie group acting effectively on F by means of an operation \cdot , an indexed family of mappings $(\varphi_{ij}; i, j \in I)$ satisfying conditions (8) and (9). Assume, further, that there exists a bundle $\mathscr{B} = (B, \pi, M, F, G, \cdot, (\varphi_i; i \in I))$ such that

$$\varphi_{ip}^{-1}(\varphi_{jp}(y)) = \varphi_{ij}(p) \cdot y$$
.

For the given differential spaces M, F and the given covering $(V_i; i \in I)$ of the space M let T be the differential space defined by (12), $\bar{\varphi}$ the relation defined by (13), $\check{\varphi}$ the mapping defined by (15) and let B be the differential space

$$(24) \qquad \qquad \check{B} = (\check{B}, \mathscr{F}(\check{B})),$$

where $\dot{B} = T/\bar{\varphi}$ and $\mathscr{F}(\dot{B}) = \dot{\varphi}^{*-1}[\mathscr{F}(T)]$.

If the mapping $\check{\pi} : \check{B} \to M$ is given by

(25)
$$\check{\pi}(\check{\varphi}(p,y,i)) = p \quad \text{when } \check{\varphi}(p,y,i) \in \check{B}$$

and the mapping $\check{\varphi}_i$: $V_i \times F \rightarrow \check{B}$ by

(26)
$$\check{\varphi}_{i}(p,y) = \check{\varphi}(p,y,i),$$

then $\check{\pi}$: $\check{B} \to M$, $\check{\varphi}_i$: $M_{V_i} \times F \to \check{B}_{\check{\pi}^{-1}[V_i]}$ is a one-one mapping and

(27)
$$\check{\varphi}_i = \check{\varphi} \mid_{\mathcal{V}_i \times F \times \{i\}} \circ r_i^{-1},$$

where r_i is defined by (23).

Let b be an arbitrary point belonging to B. There exist $y \in F$, $i \in I$ and $p \in V_i$ such that $b = \varphi_i(p, y)$, where $\varphi_i \in (\varphi_k; k \in I)$. If $b = \varphi_j(p', y')$, where $p' \in V_j$, $y \in F$, then it follows from the properties of the bundle

 \mathscr{B} that $\varphi_i(p, y) = \varphi_j(p', y')$ and p = p', or, in other words, $\varphi_{i,p}(y) = \varphi_{j,p}(y')$, where $\varphi_{i,p}$, $\varphi_{j,p}$ are defined by (6).

Hence $y' = \varphi_{j,p}^{-1}(\varphi_{i,p}(y))$. From the last equality and the assumption we have $y' = \varphi_{ji}(p) \cdot y$. Therefore $(p, y, i) \overline{\varphi}(p', y', j)$, that is, $\dot{\varphi}(p, y, i) = \dot{\varphi}(p', y', j)$. Thus we have

$$\varphi_i(p, y) = \varphi_i(p', y') \Leftrightarrow \check{\varphi}(p, y, i) = \check{\varphi}(p', y', j).$$

Hence it is justified to define a mapping $h: B \rightarrow \tilde{B}$ as follows:

$$h = (b \mapsto \dot{b}),$$

where $b = \varphi_i(p, y)$, $b = \dot{\varphi}(p, y, i)$ and $p \in V_i$, $y \in F$.

We shall show that h is a one-one mapping of the set B onto the set B. Let $h(b) = h(b_1)$, where $b_1 = \varphi_j(p_1, y_1)$. Then we have $\check{\varphi}(p, y, i) = \check{\varphi}(p_1, y_1, j)$, that is, $(p, y, i) \bar{\varphi}(p_1, y_1, j)$. From the definition of the relation $\bar{\varphi}$ it follows that $p = p_1$ and $y_1 = \varphi_{ji}(p) \cdot y$ for $p \in V_i \cap V_j$. From this fact and from the assumption of the existence of a bundle we obtain $\varphi_{j,p}^{-1}(\varphi_{i,p}(y)) = y_1$. Therefore $\varphi_i(p, y) = \varphi_j(p, y_1)$ and so $b = b_1$.

Let \check{b} be an arbitrary point belonging to \check{B} . There exist $y \in F$, $i \in I$ and $p \in V_i$ such that $\check{b} = \check{\varphi}(p, y, i)$ and $\check{\pi}(\check{b}) = p$. Thus there exists a point $b \in B$ such that $b = \varphi_i(p, y)$ and $\pi(b) = p$.

We shall show that $h\left[\pi^{-1}[V_i]\right] = \check{\pi}^{-1}[V_i]$. Let $b \in \pi^{-1}[V_i]$. Thus there exist $p \in V_i$, $y \in F$ and a diffeomorphism $\varphi_i \in (\varphi_i; i \in I)$ such that $b = \varphi_i(p, y)$. Moreover, there exists a point b = h(b) such that $b = \check{\varphi}(p, y, i)$. Since $\check{\pi}(\check{b}) = p$ and $p \in V_i$, we have $\check{b} \in \check{\pi}^{-1}[V_i]$. Hence $h\left[\pi^{-1}[V_i]\right] \subset \check{\pi}^{-1}[V_i]$. For the opposite inclusion take a $\check{b} \in \check{\pi}^{-1}[V_i]$. There exists $p \in V_i$ such that $\check{\pi}(\check{b}) = p$. Let $\bar{b} = \check{\varphi}(p_1, y_1, j)$. Then $\check{\pi}(\check{b}) = p_1$, where $p_1 \in V_j$. Thus $p = p_1$ and $p \in V_i \cap V_j$. Put $y_1 = \varphi_{j_i}(p) \cdot y$. Then $(p_1, y_1, j) \bar{\varphi}(p, y, i)$. From this and from the assumption we have $y_1 = \varphi_{j,p}^{-1}(\varphi_{i,p}(y))$, that is, $\varphi_{i,p}(y) = \varphi_{j,p}(y_1)$ for $p \in V_i \cap V_j$. Thus $\varphi_i(p, y) = \varphi_j(p_1, y_1) = b$. Since $\pi(b) = p \in V_i$, we jet $b \in \pi^{-1}[V_i]$. From the above considerations it follows that $h|_{\pi^{-1}[V_i]}$ is a one-one mapping of the set $\pi^{-1}[V_i]$ onto the set $\check{\pi}^{-1}[V_i]$. Since the triangle

is commutative, we obtain that $h|_{\pi^{-1}[V_i]}: B_{\pi^{-1}[V_i]} \to \check{B}_{\check{\pi}^{-1}[V_i]}$ is an epimorphism.

From what has been said above it follows that there exists a mapping h^{-1} : $\check{B} \to B$ such that $h^{-1}|_{\check{\pi}^{-1}[V_i]}$: $\check{\pi}^{-1}[V_i] \to \pi^{-1}[V_i]$ is an epimorphism.

Let b be an arbitrary point belonging to $\check{\pi}^{-1}[V_i]$. Then $h^{-1}(b) = b$, that is, $h^{-1}(\check{\phi}(p, y, i)) = b$. Since b can be written in the form

$$b = \varphi_i(r_i(p, y, i)),$$

where r_i is defined by (23), we have

$$h^{-1}\circ\check{\varphi}\mid_{V_{i}\times F\times\{i\}}=\varphi_{i}\circ r_{i}.$$

From the fact that the family of sets $(V_i \times F \times \{i\}, i \in I)$ is an open covering of the space T and from (30) it follows that

$$h^{-1} \circ \check{\varphi} \colon T \to B.$$

Further, from the fact that the differential structure of the differential space B is coinduced from T by the mapping $\check{\phi}$ and from (30) and (31) it follows that the triangle

is commutative.

Therefore h is a diffeomorphism of the differential space B onto the differential space B.

Since $\dot{\varphi}_i$ defined in (26) maps the set $V_i \times F$ onto the set $\pi^{-1}[V_i]$ and since $\dot{\varphi}_i = h \circ \varphi_i$, we see that the mapping

$$\check{\varphi}_i: M_{\mathcal{V}_i} \times F \rightarrow \check{B}_{\check{\pi}^{-1}[\mathcal{V}_i]},$$

where

$$\check{B}_{\check{\pi}^{-1}[V_i]} = (\check{\pi}^{-1}[V_i], \check{\varphi}^{\bullet-1}[\mathscr{F}(T)]_{\check{\varphi}[V_i \times F \times \{i\}]}),$$

is a diffeomorphism. Therefore the structure $\check{\varphi}^{\bullet-1}[\mathscr{F}(T)]_{\check{\varphi}[\mathscr{V}_i\times F\times\{t\}]}$ is identical with the structure coinduced by $\check{\varphi}_i$ from the differential space $M_{\mathscr{V}_i}\times F$, that means

$$\varphi_i^{\bullet-1}[\mathscr{F}(M_{\mathcal{V}_i}\times F)] \,=\, \check{\varphi}^{\bullet-1}[\mathscr{F}(T)]\check{}_{\varphi[\mathcal{V}_i\times F\times \{i\}]}.$$

From the definition of the coinduced structure it follows that $a \circ \check{\varphi}_i^{*-1} [\mathscr{F}(M_{V_i} \times F)]$ if and only if $a \circ \check{\varphi}_i \in \mathscr{F}(M_{V_i} \times F)$. Since $\check{\varphi}_i = \check{\varphi} \mid_{V_i \times F \times \{i\}} \circ r_i^{-1}$, where r_i is defined in (23), we have

$$a \circ \check{\varphi} \mid_{V_i \times F \times \{i\}} \circ r_i^{-1} \in \mathscr{F}(M_{V_i} \times F).$$

Hence we obtain that

$$a \circ \check{\varphi} \mid_{\mathcal{V}_i \times F \times \{i\}} \in (r_i^{-1})^{*-1} [\mathscr{F}(M_{\mathcal{V}_i} \times F)].$$

Since $r_i\colon M_{\mathcal{V}_i}\times F\times i^*\to M_{\mathcal{V}_i}\times F$ is a diffeomorphism, it follows that the differential structure coinduced by r_i^{-1} from the differential space $M_{\mathcal{V}_i}\times F$ is identical with the differential structure of the differential space $M_{\mathcal{V}_i}\times F\times i^*$. Thus $a\circ\check{\phi}\mid_{\mathcal{V}_i\times F\times (i)}\in \mathscr{F}(M_{\mathcal{V}_i}\times F\times i^*)$, i.e.

$$\alpha \in (\check{\varphi}\mid_{V_i \times F \times \{i\}})^{\bullet - 1} [\mathcal{F}(M_{V_i} \times F \times i^{\bullet})].$$

Therefore

$$\check{\varphi}^{*-1}[\mathscr{F}(\underset{k\in I}{\oplus}M_{\mathscr{V}_k}\times F\times k^*)]_{\check{\varphi}[\mathscr{V}_i\times F\times\{i\}]}=(\check{\varphi}\mid_{\mathscr{V}_i\times F\times\{i\}})^{*-1}[\mathscr{F}(M_{\mathscr{V}_i}\times F\times i^*)],$$

which completes the proof.

References

- [1] S. MacLane, Differential spaces, Notes for geometrical mechanics, Winter 1970 (unpublished).
- [2] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), p. 251-272.
- [3] N. Steenrod, The topology of fibre bundles, Princeton, New Jersey, 1951.
- [4] W. Waliszewski, Regular and coregular mappings of differential spaces, Ann. Polon. Math. 30 (1975), p. 263-281.

Reçu par la Rédaction le 15. 7. 1975