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Abstract. The notion of a differential space is due to R. Sikorski and S. Mac
Lane who, working quite independently, introduced it in their works [1] and [2].

In the present paper a necessary and sufficient condition for the existance of
a bundle in such a space is given, Steenrod’s definition [3] of a bundle being followed.
It oocurred that the main difficulty while translating the construction of a bundle
from the category of topological spaces and topological groups into the category of
differential spaces and generalized Lie groups was to find conditions deiermining
the division of a certain differential space by a suitable equivalence relation.

Preliminaries. Let € be a non-empty set of real functions defined
on M. Following R. Sikorski we shall denote by 7, the weakest topology
on M for which all functions « € ¢ are continuous.

A set ¥ of real functions defined on M is said to be a differential
structure on. M [2], if:

(») The set ¢ is closed with respect to localization, i.e. € = €,,
where %p, is the set of all functions a: M—R such that for any
point p € M there exists a set A € 74, and f € ¥ with |4 = a|4d

and

(*+) The set ¥ is closed with respect to superposition with smooth
functions, i.e. the following condition is satisfied:

if wed, and @y,...,9, €%, then w(ps(*),..., (")) €%,

where &, is the set of real functions of class;%’“(R").

By a differential space M we shall understand a couple (M, & (M)),
where # (M) is a differential structure on M [2]. M, will denote the
differential space (A, (# (M) A), where A c M.

Let M and N be differential spaces. We say that f maps smoothly
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the differential space M into the differential space N, in symbols
J: M—»N,

if f: M—N and for an arbitrary function ¢ € #(N) we have aof € F(M).

The mapping f: M >N is called a diffeomorphism if f is a one-one
mapping of the set M onto N and f~': N—>M.

Let M be a differential space and let f: M—N. For an arbitrary
real function § mapping the set N into E we put f*(8) = fof. Denoting
by RY the set of all such functions §, we obtain a mapping f*: R¥->R™,

It can be proved (cf. [4]) that f*~'[#(M)] is a differential structure
on N; this structure is called the structure coinduced by the mapping f
from a differential space M. It is also proved in [4] that f*~'[#(M)] is
the greatest of differential structures on N for which the mapping f is
smooth.

Let M = (M, #(M)) and N = (N, #(N)) be non-empty differential
spaces. Let # (M) x% (N) denote the smallest differential structure on
M x N containing all functions ao=x,, fon,, where a € F(M), f e F(N)
and n,: MXN—->M and =,: MxN-—+N are the natural projections.

The differential space (M xN, #(M)xZ#(N)) is called the produot
of the differential spaces (M,# (M)) and (N, #(N)) and is denoted by
M xN.

Let @ = (G, #(@)) be a differential space and let (G, ®) be a group.
If the mappings:

1) ((91y 92)—>9:0 ga): GXG>G
and
(2) (9—g7"): GG

are smooth, i.e. ((¢,,9.)—>9:10 gs): G XG—>G and (g—g~'): GG, then
the set G together with the differential structure # (@) and the group
structure © is called a generalized Lie group.

Let @ be a generalized Lie group and let F = (F, #(F)) be a differ-
ential space. G will be called a group of transformations of the space F
acting smoothly on # by means of % if:

(3) n: G xXF->F,
(4) n(e,y) =y for y € F, where ¢ is the unit of the group @,

(B) 7010 98 ¥) = 1(01, (92, %) for yeF, g,,0,€G.

We shall say that @ aots effectively on F if the equality (g, y) =y hold-
ing for all y e F implies g = ¢. In the sequel we shall use the notation
g-y instead of 7(g, y).
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A bundle is a system of the form
% =(B,n,M,G,',(¢p,-; iEI))’

where B, M, F are differential spaces, »: B—~M, @ is a generalized Lie
group acting effectively on F by means of an operation -, (V;; ¢ €I)
is an open covering of the space M and (p;; ¢ € I) is a family of diffeo-
morphisms satisfying the following conditions:

(a) 'ZH (Vi"g:(-M)V,—) xF»(n"[V,], f(B)u_l[Vi]);
(b) nlp(p,y)) =p forpeV, yeF;
(c) For an arbitrary ¢ €I and for any p € V, the mapping
Pt =By
defined by the formula
?ip(y) = @u(pyy) foryeF
is a diffeomorphism;

(d) For arbitrary elements 4, jelI and pe V;nV, the mapping
defined by the formula -

?y(P) Y = Pin (910 ®))
is smooth, i.e.
Q‘-j: Myiﬁyjéa'c

From the definition of ¢, it follows that for arbitrary 4,j, keI and
P eVinV;nV,

(7) Pt (P) © 9j4(P) = prs(D).
Putting in (7) 4 =) =k, we see that ¢, (p) is the unity of the group,
and further, putting ¢ =k, we get

@i (D) = (91 ()"

2. A necessary and sufficient condition for the existence of a bundle.
Let M =(M,#(M)), F = (F,#(F)) be differential spaces and let
(Vy; % € I) be an open covering of the space M. Let G be a generalized
Lie group acting effectively on F' by means of an operation -. Further,
let (py; 2,j €I) be an indexed family of functions satisfying the con-
ditions:

(8) ¢yt My np—~>E,
(9) Py (P) Oy (p) = pu(p) for p e VinV;nV,.
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For an arbitrary ¢ e I we shall consider the differential space

(10) i* = ({1}, {¢;; 0 € E}), where ¢;(t) = ¢ for t =1i.
Let T be the subset of M xF xI defined by
(11) T = UV, xF x {i};

fel

we define a differential space I' by putting

(12) T =@ My, xF xi*.
fel

In the set T we now introduce a relation @:
(13) (2,9, )PP, ¥ ) =(p = 2" rpu(P) 'y =y A jel).
It is easy to show that the relation defined above is an equivalence.

Let B denote the set of all cosets modulo the relation @ in the set
T, ie.

(14) B =T[p = {[t];; teT}.
Let ¢ be the mapping of the set T into the set B defined as follows:
(16) p(t) =[t); forteT.

It can easily be verified that
(16) ¢*! [gr(g My XF X E*) v xpxmn
E -
< (‘P'V‘xe{(})._l [f(MV‘XFx".)])
where ¢*~'[F (@ My, xF x k*)] denotes the structure coinduced from
kel

the differential space 7' by the mapping ¢.

We shall prove the following

THEOREM 2.1. If M, F are differential spaces, (V,;; i € I) is8 an open
covering of the space M,@ i3 a gemeralized Lie group acling effectively on
F by means of an operation - and (py; i,j € I) is an indeved family of
Sfunctions satisfying conditions (8) and (9), then in order that there exist
a bundle # = (B,n, M,F,Q, -, (p; i €I)} such that

17) ?4(P)'Y = Gip(91p(y)) for peVinV, yeF
it i3 necessary and suffioient that the condition
(18) é‘_l[f(g)l My, XF XE*) v, xpx
< (P lpyxrx)’ " [F(Mp, X F xi*)]
be satisfied.

Proof. Assume that the differential spaces M, F' are given. Let
(Vy; ¢ € I) be an open covering of the space M, G a generalized Lie group
acting effectively on F by means of - and let (¢;; 4,j € I) be a family
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of functions satisfying (8) and (9). Assume, moreover, that the mapping ¢
defined by (15) satisfies condition (18). Let B be a differential space
defined by

(19) B = (B, ?(B)),
where B = T' [ and Z#(B) = ¢*~}[F(T)].
Define a function n: B—>M putting

(20) n(p(p,y,i) =p for (p,y,1) e V,xFx{i}.

Assume that ¢(p, ¥, 1) = ¢(p1, %1, ). Then (p,¥,4)(p:1,¥1,5). In accord-
ance with the definition of  we obtain p = p,. Therefore the mapping

n i3 well defined.

We now show that = is smooth. Consider the function 4: T—-M
defined by the formula i(p, y, i) = p for (p,y,?) € T. Since the family
(VixFx {i}; i eI) is an open covering of the space T and 1 |y pxu*
My XF xi*>M for i eI, we infer that 1 maps smoothly T into M.
From the facts that the differential structure &#(B) is coinduced from
the differential space T by the mapping ¢ and mop = 1 we obtain the
smoothness of =.

Let (p;; 2 € I) be an indexed family of functions defined as follows:
for an arbitrary 7 eI we put

(21) e(p,y) = 9(p,y,%) forpeV, yeF.
The smoothness of ¢ implies the smoothness if the mapping ¢;. Thus
92 My xF-B.

We shall show that ¢,[V,xF] = n~'[V,]. Let b e ¢;,[V;xF]. Thus there
exists a point (p, y) € V; XF such that b = ¢;(p, v). From (21) and (20)
it follows that n(b) = p. Since p € V,, we have b € ! [V,]. Thus ¢,[V,X
XF]c a~'[V,]. Let now b =¢(p,y,k) and bea"'[V,]. Then =(b)
= p € V;. From (20) it follows that =(b) = p and p € V,. Hence p € ¥;Nn
NY,. Let us put ¥’ = @, (p)-. By (13) we obtain (p, ¥, k)@ (P, ¢u (D) ¥, 9)-
Hence b = ¢(p, ¢, (P) ¥, i). Using (21) we jet b = ¢;(p, ¥’). Since p € V;n
NV, and ¥y’ € F, we have b e ¢,[V,xF]. Thus = '[V,] < ¢, [V;xXF]. We
prove now that ¢, defined in (21) is a one-one mapping. To this end we
assume that ¢,(p, y) = ¢,(p’, y') for p,p’ € ¥, and y e F. Then ¢(p, 9, 1)
= @(p’, ¥, %), hence (p, y, 4)¢ (p’, ', ¢) and so (p,y) = (p’, ¥'). Therefore
; 18 a smooth one-one mapping of the differential space M, XF onto
the differential space B,-1, and there exists a mapping it A7 V]
—V;xF. We are going to show that this mapping is smooth.
From the assumption and (16) it follows that

(22) " '[F( "GG‘DIMV,, XF X E*) o7 x pxin
= (Plyxpxin)”  [F (My, X F x i%)].
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Thus the differential space By, ,p.uy has the deferentla,l structure
identical with the one coinduced by the mapping ¢ lp,xFxu from the
differential space My XF X1i*. Let us put

(23) r(p,¥y,1%) =(p,y) for (p,y,1%)e V,xXF x{i}.

Clearly r;: My X F X i*—>My XF. Since ¢; Otp lp,xFxigy = 11y 804 taking
(22) into account we see that the mapping ¢; ! maps smoothly the differ-
ential space B,-1, onto the differential spa.ce My xF. Hence g; is
a diffeomorphism for any ¢ € I.

Let p be a fixed point in V;nV,. Consider the mapping ¢; 0@, ,:
F—>F, where g¢;,,9, are defined by (6). If y' = ¢;;(p.p(¥)), then
#1.0(¥') = @ip(y); hence ¢(p,y’) = ¢i(p,y) and so (p,¥,H@(p, ¥, ).
Therefore for an arbitrary y € F the equality ¢,(p) ¥ = ¢;,(ps ()) holds.
Thus we have shown that under the given assumptions the system #
= (B,n, M, F,@&, -, (p; t€l)) is a bundle.

Now assume that there are given: differential spaces M, F', an open
covering (V,; ieI) of the space M, a generalized Lie group acting effect-
ively on F' by means of an operation -, an indexed family of mappings
(py; ©,J € I) satisfying conditions (8) and (9). Assume, further, that
there exists a bundle # = (B,n, M, F,@, -, (¢;; i €I)) such that

9 (0p(¥)) = oy(p)y.

For the given differential spaces M, F' and the given covering (V,; ¢ € I)
of the space M let T be the differential space defined by (12), # the re-
lation defined by (13), ¢ the mapping defined by (15) and let B be the.
differential space

(24) B = (B, #(B)),
where B = T/p and f(gz) ¢ [F(T)]
If the mapping n: B—>M is given by
(26) #p(®,9,9) =p when p(p,y,i)cB
and the mapping ¢,: V,xF-—>B lby
(26) %29 =0 (0, 9,9,
then x: B—>M, ¢i: M y‘xF—>1§;,_1[m is a one-one mapping and
(27) P = @ lyxpxOT

where r; is defined by (23).

Let b be an arbitrary point belonging to B. There exist y € F, i eI
and p € V, such that b = ¢,(p, ¥), where ¢, € (p,; k €I). If b = ¢;(p’, ¥'),
where p' € V;, y € F, then it follows from the properties of the bundle
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# that ¢,(p, y) = ¢;(p’, y’)and p = p’, or, in other words, ¢; ,(¥) = ¢;,(¥'),
where ¢; ,, ¢;, are defined by (6).

Hence y’' = ¢; ,(®;,(y)). From the last equality and the assumption

we have y' = g, (p)-y. Therefore (p,y,%)p(p’,¥’,j), that is, ¢(p,y, 1)
= ¢(p’, ¥’, j). Thus we have

?i(2,9) = ¢,(0",¥)o0(p,¥,9) = 99", ¥', ).
Hence it is justified to define a mapping h: BB as follows:
(28) h = (b—>b),

where b = ¢;(p,9), b = ‘;’(P; y,%) and peV,;, yekF.

We shall show that % is a one-one mapping of the set B onto the
set B. Let h(b) = h(b,), where b, = @;(p,, ¥;). Then we have ¢(p, ¥, %)
= @(P1, Y1, J), that is, (p,y, ))§(ps, ¥1,5)- From the definition of the
relation @ it follows that p = p, and y, = ¢,(p)'y for p e V,nV,. From
this fact and from the assumption of the existence of a bundle we obtain
%75 (#4.0()) = ¥1. Therefore ¢;(p, y) = ¢;(p,9:) and s0 b =b,.

Let b be an arbltrary point belonging to B There exist ye F, 1 €I
and p e V; such that b = p(p,y,1) and n(b) = p. Thus there exists
a point b € B such that b = ¢;(p, vy) and =(d) =

We shall show that h[z '[V,]] =="'[V,]. Let bexn'[V,]. Thus
there exist p € V;, y € F and a diffeomorphism @, € (p;; © € I) such that
b=e9,(p,9) Moreover, there exists a point b= h(b) such that b
=o(p,¥y,1). Since #(b) =p and peV,, we have ben" I[V‘(] Hence
h[a~'[V]] = a7'[V,]. For the opposite inclusion take a ben"[V‘]
There exists p € V; such that n(b) = p. Let b = ¢ (p,, ¥1,j). Then n(b)
= p,, where p, e V,. Thus p =p, and p e V;nV,. Put ¥, = g;(p)y.
Then (py, ¥:,7)®(P, ¥, ¢). From this and from the assumption we have
Y1 = 9j,p(P:(¥)), that is, ¢ ,(y) = @;,(4,) for p € V;nV,. Thus ¢,(p,¥)
= @;(py,¥;) = b. Since n(b) =peV,, we jet bexn"'[V;]. From the
above considerations it follows that A |,-yy, i8 a one-one mapping of
the set z~![V,] onto the set =~ '[V;]. Since the triangle

My, X F

(29) ¥

B,y > Bi-1py

M=y,

is commutative, we obtain that hl,-yp,: Ba“[V.—l‘*bi"lVd is an epi-
morphism,
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From what has been said above it follows that there exists a mapping
h~': B->B such that h~ l|,,_1[,7] A [ V,]->n" [V,] is an eplmorph.lsm

Let b be an arbitrary point belonging to z~![V,]. Then h~! (b) =b,
that is, h~'(p(p, y, %)) = b. Bince b can be written in the form

b= 9’((’1(1’9 Y, 7')”
where 7; is definod by (23), we have
(30) h~'og l7,x Fx@y = P07

From the fact that the family of sets (V; X F x {¢}, i:e:I ) is an open cover-
ing of the space T and from (30) it follows that

(31) hlop: T—B.

Further, from the fact that the differential structure of the differential
space B is coinduced from T by the mapping ¢ and from (30) and (31)
it follows that the triangle

T

h—log

|«

is commutative. )
Therefore h is a diffeomorphism of the differential space B onto

the differential space B.
Since @; defined in (26) maps the set V,xF onto the set x'[V,]
and since ¢; = hog,, we see that the mapping

éﬁ .My‘ XF—)B;—JI[V‘],
where _
B'-lm] = (;‘—I[V-:]’ ‘:0‘_1[37 (T )]&[V,xmx{m)’

is a diffeomorphism. Therefore the structure ' I[F (T)],,mx Fxgy 18
identical with the structure coinduced by @, from the differential space
MV‘xF that means

oI 7' [F (My, X )] = ¢* 7' [F (D) Ty xwxin

From the definition of the coinduced structure it follows that
aocp,“1 [.?(MV‘XF)] if and only if aog € F(My xF). Since
P =9 |V,xrxm°"¢ , Where r; is defined in (23), we ha.ve

a0p ly,xpxnO?i ' € F(My xF).
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Hence we obtain that
a0 |p.xrxpy € (7)) T [F (My, X F)].

Since r;: My, xF Xi*>My XF is a diffeomorphism, it follows that the
differential structure coinduced by 7! from the differential space M, x F
is identical with the differential structure of the differential space M, x
X F x i*. Thus aog I, % Fx (i) € F(My XF Xi*), ie.

ac(p lp,xmx@) ™ [F (M, X F x3%)].
Therefore

"’ [f(k@; My, XF X E*)apxpxin = (P lpxrx)  [F (Mp, X F X i*)],
€.

which completes the proof.
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