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Cluster sets of set-mappings

by SHINJT YamaseiTa (Tokyo, Japan)

Abstract. A set-mapping S from a set 4 # @ into a set B is a mapping from A
into the set of all subsets of B. We introduce the cluster sets of § along the classical
lines, and propose some properties of them. Among other things we prove that some
of the known results on the cluster sets of the usual mappings follow under far general
settings; especially those of Collingwooed on the boundary cluster sets of ‘arbitrary
functions” are contained in the Young-type theorem on set-mappings defined on the
cirele. We further introduce the notion of the ¢“houndary normality condition”, which
reveals that many results on the cluster sets of meromorphic functions in the disk
depend on a simple topological property, whence do not depend on the “analyticity”
heavily. The notion of set-mappings will be of use in the study of many-valued functions,
Tor example, algebroid functions.

Introduction. A set-mapping § from a non-empty set 4 into a set B,
in notation, §: A — P(B), is a mapping from A into the totality P(B)
of subsets of B (see [20]); thus, S(p) may be empty for a p € A. The notion
is an extended one of a (single-valued) map f from A into B in the sense
that we obtain a set-mapping S;: A4 — P(B) on setting 8;(p) = {f(p)}
for each p € A. Assume that 4 lies in a topological space T, and B is a topo-
logical space. We use the notation §(4,) = U S(p) for each subset 4,

_’DE _
of A with §(@) —=@. Let p e T be a point of the closwre B of B  A.
We define the oluster set Ogx(S,p) of 8: A — P(B) at p relative to £ by

Oz(8,p) = Q S(Vn(E'—{p})):

where V ranges over all neighbourhoods of p in 7' and the closure is taken
in B; Cx(8, p) i3 a (possibly empty) closed set in B,

In the present paper we shall study systematically the cluster sets
of §: 4 — P(B) in the case where B is a metric space 2, and 4 is the
disk D = {z; || < 1} or the circle I' = {z; |[¢| = 1} in the complex plane.
(See [14] and [4] for the Dbasic properties of cluster sets of single-valued
functions. See also [19] for an abstract study.) In Section 1 we extend
the symmetry theorem of W. H. Young [26] to set-mappings §: I'— P(2),
0 being K, that is, £ admits a countable covering by compact sets.
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We emphasize that the extension (Theorem 1.1) would not be a mere analogy
in the sense that the results of E. F. Collingwood (see [4], p. 82,
Theorem 4.11) and J. T. Gresser [9], Theorem 2, follow from Theorem 1.1
under far general settings (see Corollary 1.2 and Corollary 1.3). In Section 2
we prove the two theorems (Theorem 2.1 and Theorem 2.3) for §: D —»
— P(Q), 2 being K ,. The results contain Collingwood’s maximality theorem
on arbitrary functions (see [4], p. 80, Theorem 4.10) and the analogons
result due to P. Lappan [11], Theorem 1. In Section 3 we consider the
continuous set-mappings from D into L. The Collingwood maximality
theorems (see [4], p. 76, Theorem 4.8 and [3], p. 387, Theorem 8 and
p. 388, Corollary 4) for continuous or meromorphic functions follow from
Theorem 3.1 and Theorem 3.2. In Section 4 we assume on 8: D — P(Q)
a certain smoothness, called the boundary normality condition. Under the
assumption we obtain the extensions of the results for meromorphic func-
tions. The results of J. M. Anderson [1], Theorem, and K. Noshiro [15],
Theorem 8, are contained in Theorem 4.1, Corollary 4.2 and Theorem 4.7.
‘Further, as a special case of Corollary 4.4, we obtain an extension of the
Meier theorem (see [4], p. 154, Theorem 8.8) to algebroid, proved in [23],
Theorem 2. The notion of the set-mappings thus serves for the study of
boundary behaviors of multiple-valued functions in .D. Since there are
some definitions of normal points for meromorphic:functions in D, we
propose Theorem 4.7, which reveals the equivalence of them. TFinally
in Section 5 we shall study the horoeyclic versions, in the sense of F. Bage-
.mih] [2], of the results in the preceding sections. The versions follow from
some geometrical considerations in D.

1. A Young-type theorem. We firgt pons"ider a set-mapping from I"
into Q; to avoid confusions, we denote the mapping by 2: I' - P(9).
For [ eI' we denote Cr(Z, ) = 0(Z, {). Furthermore we set;

0%(Z,¢) = N Z(T4(0)n7),
a,nii
0"z, ) = N Z{T30n7),
where V ranges over all open disks of center £ and
I'n( 5) {z el Im(2{7") < 0},
T'p(8) = {z e I'; Im(2£77) >.0}.
We note that both ¢5(X, ¢) and CB(X ,. f). are closed, and

(1.1) 0%(Z, H)UOR(Z, ) = O(Z, ¢)
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for each { e I'. In 1928 Young [28], p. 270-271, showed that an arbitrary
real function of one real variable has the symmetry property which we
describe for a real function f on I'. Namely,

CH(Z;, £) = 0(Z;, 0) = O%(Z, §)

for eaeh e I' except possibly for a countable. subset on I', where Z,({)
= {f(&)} at each { € I'. We ghall show that an analogous result (indeed,
an extension) is true for arbitrary X: I' - P(2) if Q is K,.

THEOREM 1.1. Let 2 be I,, and consider X: I' - P(2). Then,

(1.2) CH(Z,0) =0(Z,0) =0%(Z, Q)
and
(1.3) 0(Z, [uI(L) = 0(Z, &)

Jor each { € I' except perhaps for a countable set on I

Proof. We first remark that given a natural number n, each compact
set in @, being K ,, can be covered by a finite number of open balls with
radii less than 1/(3n). Therefore, 2 admits a countable covering of (non-
empty) compact sets

(1.4) K7, K}, ..., KD, ..
with diameters strictly less than 1/n. We set

- —_—

0*(Z,0) =0(2,)uZ() (Lel).

The set
BE = {t el C*(Z, )~ 0%(Z, {) +# 0}
is decomposed as
(1.5) Bt = U E,,
with "
By = {¢ e T3 KjynC*(Z,§) # @ and Kjn0®(Z, L) = 0}

for n,m =1, 2, ... Firgt, the inclusion > in (1.5) is obvious. To prove <
in (1.5), we let ¢ e BE. It C®(X,¢) =@, we have { e B, for Ky, with
ErACH(Z, L) #@. It 0B(Z, {) # 0@, we may find ae 0*(Z, )— 0% (Z, {)
and » such that the distance of a and the closed set 0F(Z, ¢) is more than
2/n. We then find m such that « € K. It follows from K% n0%(Z, () =0
that ¢ ¢ B,,,. Now, we show that if { € F,,,, then  is the left-hand end-
point, viewed from an observer at the origin, of the open arc I({) on I”
such that for each &eI(f), C*(Z, §)nKY =@. For, if otherwise, there
exists a sequence &, eI, with 0< arg(f&;') =0 as % — oo, such that
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CH(Z, )N K" «@ (k>1). Then we may choose &, in a neighbourhood

of each &, on I' such that X(&)nKY, #@ (k> 1) with 0< arg(£&; 1) -0

a8 &k — oo. To see this we assume '
ZmnKy, =0

for each 5 in a n’eighbou‘rhood I, on I' of a certain £,. Since Z(nNnKhr=0
for each 7,

S(I)nE: =0,
‘whence
ST KL = Z(I)nKL =9,
‘We then have a contradiction that 0% (Z, &,)nK}, = @, bocause
0*(Z, &) = NIVl < Z(L),

where V ranges over all open disks of center £,. Now, we can choose a
subsequence {£,} of {£,} and a point B on the compact set Ky, such that
‘there exists f,e Z(£,) (k > 1)y with 8, — B as k — oco. This implies that
B € C%(Z, ), a contradiction to { € T,,,. Now that the existence of I({)
iy proved, we remaxk I({)nE,, =@ for each { € H,,,. The set H,, thus
connigts of the left-hand end-point of non-overlapping open arcs on I
whence F,,, is countable, Thus, B¥ is countable by (1.5). Similarly we can
prove that the set BF correspondmg to CF(Z, -)<s countable. Thereiore,
for each { e I'—(BFUHR),

OL(Zy C) = 0*(27 C) = GR(Z" 4.)’

which, combined with (1.1) and C(Z, {) = 0*(X, {), implies (1.2) and (1.3).
Let §: D - P(Q), and consider Zg : I' > P(R) defined by

Z5(8) = 0(8,8) =0p(8,10)

for each {el. Then the sets O0F(Zg, {) = CPR(8,¢) and CF(Zg, )
= CPL(8,¢) (L e I') are called the right-hand and the left-hand boundary
cluster sets of § at ¢, respectively; the definitions are consistent with those
of a single-valued map f from D into Q on considering 8;: D —P(Q)
(see [4], p. 81-82). The set C%(8, ) = C(Zg, {) is called the boundary
cluster set, a naturally extended notion of that of single-valued maps
(see [4], p. 81). It is not difficult to see that CF(8, ¢) = O(S, &) .(¢ e I,
‘whence it follows that

(1.6) C(Z5, HUZ(0) = 0(8,8) (tel).

Applying Theorem-l‘l t0 our X, and considering (1.6) we obtain
CorROLLARY 1.2. Let 8:' D — P(Q), 2 being K,. Then

CPL(8, &) = 0B(8, ¢) = CBR(8, )
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and .
C(Sa C) = GB(Sy C)

for each ¢ & I' except perhaps for a countable set on I
For each { € I' we now consider a collection £(Z) of subsets G (¢) = D
guch that { e @({). Given §: D - P(Q2), we set

(1.7) Ig(8,0) = () Ogy(8,0);
al)e £(7)

we call IIg(8, [) the Q-principal cluster set of 8 at £. Congider X,: I' — P(Q),
defined by

Zi(¢) =I4(8,8) (Lel).
The boundary 8-prinecipal eluster set of S at { e I' is the sef
BIIy(8,{) = C(24, 0).

The terminology is consistent with that of Gresser [9], p. 324, in the case
8;: D — P(Q) induced by a map f: D — Q. Applying (1.3) of Theorem 1.1
to our X,, and noting that 2i({) = I13(8, ), we have

CoroLLARY 1.3. Let 8: D —» P(2), 2 being K,. Then

ITo(8, ) = BIIy(8, )
for each { € I' except perhaps for o countable set on I

2. Maximality theorems of Collingwood-type. By an angular domain
at ¢ e I' we mean a triangular domain whose vertices are  and two points
of D. Our topics in this section are concerned with the angular cluster
set C,4(8, ¢) and the full cluster set C(8, ) =Cp(8,¢) of §: D —P(Q).
The outer angular cluster set of 8 at { is defined by

(2.1) Cc4(8,¢t) = UG &)

where A ranges over all angular domains at {. Then we set
={Cel; ﬂO’A(S £y =C4(8,¢ O},
J(8) = {¢ € K(8); C(8,L) = 048, )}

Thus, { € K(8) if and only if 041(8, £) = 04,(8,0) for each pair 4,, 4,
of angular domains at £, while { € J(8) if and only if C,(8,¢) = 0(8, ¢)
for each angular domain A at {. Aset A on I'is called residual on I'if I'— 4
is of firgt Baire category on I'y while 4 is called a.e. (almost everywhere)
on I'if I'— A is of linear Lebesgue measure zero. The intersection of o count-
able number of open sets on I'is called G5 on I'; the meaning of F,, G,,,,
ete., on I'y is thus obvious.
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TeeoREM 2.1. Let S: D - P(Q), £ beingl K,. Then J(S) 18 G5 and
residual on I

Since J(8) = K (8), we obtain

CoROLLARY 2.2. The set K (8) is residual on I' for 8 of Theorem 2.1,

THEOREM 2.3. Let S: D - P(RQ), Q being K,. Then K(8) 4s F,
and a.e. on I. )

For a subset 2, of 2 and ¢ > 0, the e-neighborhood of 2, is the set
N(2,, &) = {w e Q; d(R,, w) < &} with the convention that N(D,e) =@
and N ({w}, e)v = N(w, &), where d(-, -) denotes the distance in Q. Assume
that 2 is K,, and let G({) and Q({) be the subsets of D and 2, respec-
tively, depending on ¢ e I' with ¢ € @(¢). For 8: D — P(Q) we set

(2.2) E={el; 2(()—Cs (8, {) # B}.
We shall decompose F in a countable sum:
(2.3) B=U Enmqn

n,m,q,n

m five steps, where n,m, ¢, n range over all natural numbers. It ¥ = @,
we let each H,,,, = 9. We consider the.case I # @.
First step. Set

.Q(C,%) = Q(:) —m(Og(c)(S, C),l/'n)‘ (CEP)

and
={lel; Q(,n) #0).
Then we have
E <&, .
n

In effect, if ¢ € B and Cy (S, §) # @, we may find a € Q(2) — Cgp (S, )
and » such that 2/‘77:< d(Og(c) (AS(, é,-), a).
Second step. Consider K, of (1.4). Since 2 = (JK”, we have

e
En < U"Eﬂﬂl7
m
where
) B,, = {C el'; I, O.Q(C, n) #* @}

Third step. First of all we show that Cy (8, C)nKm =@ for each
¢ € B,,,. Remerber that

Cay (8, 8) = MB(G,(D),
a
where G,(¢) = @(0)n{e; le—L1<1/g} ({eTI'). Assume that there exists

£ € Oz S C)ﬁK" for { € l,,,. Choose o€ K} nQ(L,n). Then, d(B,a
< 1/n, whence aeN{Ogy(8,),1/n) becanse of B elgy(S, ). Thls
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contradicts a € 2(£, n). Now, since K, is compact, and since @,(f) de-

creases as ¢ increases, we obtain ¢ for { e H,, such that S(G,(0))nEKp,
= @. Setting .

Bumg = {C €Ty 2(0)nEY, #0 and 8(G,(0))nE: =0},
we have '

nmgq*

Enmc UE
/)
Fourth step. Setting
Bngy = { € I'; 2(0)nK}, # 0 and either 8(G,(()) = 0

or d(K;},, 8{6,(0)) = 1/"7},
we have

(2.4) . Bmg = U Bygn-
n

Fifth step. By the inclusion formula (2.4) we have < in (2.8); it is
cagy to see o in(2.3). '

Proof of Theorem 2.1. Let 4(1) be an angular domain at 1, and
let A(L) be the domain at { € I" obtained by rotation of A(1) around the
origin, We consider F of (2.2) by setting Q(f) = C(8, ¢) and G(&) = 4(&);
we denote B = F{4 (1)) to indicate 4 (1). Then, by (2.3),

E(A (1)) = U Emnqn

”,9,8,1

with _
By = (£ €15 0(8, £)nKy+# @ and_either S(R,(0)) =0
or a(E%, 8(By(0))) > 1/},

where R, (¢) = 4(0)n{e; le—Cl<1/g). To prove that E(A(1)) is P,
and of first category it suffices to show that each E,,,,, is closed and of
first category on I

Closedness. Consider a sequence {; € I, with {; — {. 8ince C(8, {,)n
nKj, + @ for each j, we may find o; € Ky, 2; € D and §; € §(g;) such that
d(a;, f;) ~ 0 and |¢;—{;| — 0 a8 j— oco. Since K, is compact, we have
a subsequence {2} of {#;} and a point « e Kj, such that d(a, ;) - 0 and
|; — | = 0, where f; € 8(2;) (j =1), whence O(8, {) nK}, 7 @. On the other
hand, each point of R,({) is contained in a certain B,(;) because ¢; — .
Since ¢ € B,,,,, (j=1) it follows that either S(R,(()) =@ or d(EK~

m?
S(_Rq(C)))> 1/n. We have thus proved (e kX,,,, which shows that
B, I8 closed. _

Category. Assume that a certain I, .. is of second category on I
We then find an open arc A on I'y where the closed set F,,,, is dense,
or A c B,,,,- Consider the open set

ted
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Then each. #z € M belongs to some R, (L), £ € B,y,,, whence, cither 8(z) =0
or else §(2) #* @ with

a(E%, S(2)) = KL, SRy (0) > 1.

On. the other hand, Mt containg & neighborhood VD of {; € A, where V
ig an open disk containing {,. Therefore

ag(8, L) nIy, = 9;

a contradiction to ¢, € B,,,,,. Now that B (4(1)) is known to be ¥, aund
of firgt category, we prepare a countable number of angular domains
A;(1)°(§>1) at 1 such that each angular domain at 1 conmtains one of
4,(1), and is contained in one of 4,(1). In effect, we choose all the angular
domainsg at 1 whose other vertices are all rational points of D, that is, 2 e D
with both Rez and Imz rational. Let

(2.5) 438) (j=1,0el)

be the angular domain at € [" obtained by rotation of 4,(1) around the
origin. Our Theorem 2.1 now follows from the decomposition:

I'—J(8) = HE(A,(l)).
Actually, to prove <, we find A({) &t { e I'—J(8) such that C, (8, %)
< C(8, ). We have only to choose 4,({) = 4({).

Proof of Theorem 2.3. Let {4,({)} be the sequence of domains
of (2.5). We choose an arbitrary pair 4,({), 4,(¢),J # p, and we consider
of (2.2) by setting (&) =0Aj(¢)(;6', () and G({) = 4,({); we denote
B = T(j, p) to indicate j and p. We now show that

(2.6) I'—EK(8) = UE(,p).
J#p

For, we may find a pair 4 ({) and A’ () at { e I'— K (8) such that C 4 (S, ) —
—C (8, 2) # 0. We then choose j and p such that 4,(¢) o 4(¢) and
4,(8) < 4°(L). Then, { e B(j,p). Now, from (2.3), applied to E(j, p),
it follows that

(2.7 E(j,p) = U Emnqr]’
ANyl
with
Boman = {C el Gdj(;)(ﬂ, OnK), +#+ @ and either S(RJ,Q(C)) = or

(KL, 8(R,,(0))) = 1/},

where we may suppose, without loss of generality, that

Rppll) = 4,(0)n{e; 1—q7' < o] < 1}
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‘We then set

Qss(8) = 4;(0)nf3 1—sT < I <1 —(s+1)7'}
fors =1,2,... and { e[, and we set

Fome = [¢ € 75 8(Q5(0) nR(K;,, 1/3) # 0}

for natural numbers n, m, v and s. We now set

an: = 11111 Fumns = ﬂ U -anvs’

§—>0 =1 g=!

and

Bjyngn = {t € Tj oither 8(R,,(2)) is empty or d{ET,, 8{Bn(2)) = 1/n).
We show

(2'8) Enmqn = q (E::.'mgn r-\'F'n,mu) v

The inclusion < is easy to prove. To see o, we let £ be a point of the right-
hand side set of (2.8). Since [ e an, for emch v it follows that 0 40) (8, &)n
nK} #@. Combined with e, this implies ¢ eEnmq,, We shall
show that each E,,, is closed (hence @) and each F,.. is opon. Then
each H,,,, is G; by (2.8), whence each E(j, p) is G;, by (2 7). By (2.6) we
know that K(S) is F,. Now, it is easy to see that H,,,,, is closed. To
prove the openness of F,.,,,., let { € F,,,.., Let 2, € Q;(L) such that 8 ()
AN(XK,, 1/v) # G. Then, { is contained in the open set

V(¢) = {¢' € I3 @5(¢) contains 2},

and V(¢) is contained in F,,,.. The rest we have to prove is that each
Borel set #,,,, i8 of (outer) measure zero, which, combined with (2.6)
and (2.7), implies that K (8) is a.e. on I'. Since by (2.8),
\ Emnfm cd = E;:.mr_mm-p nimn(r4-1) 9

it suffices to show that A is of outer measure zero. Assume that a certain A4
is of positive outer measure. By the well-known density theorem (see [16],
p: 129, Density theorem) almost all points of A are points of outer density
for A. Let £, be a point of outer density for 4. Then

[measure of (ANT(8)]/I2e) > 1

for each sequence g, > 0, g, 0, where I, (£,) is the open arc on I" of center £,
and of arc length 2¢,. Then a terminal part of 4;(f,) is covered by

(2.9) E(4) = U Ey(0)
fed
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in the sense that there is no sequence 2z, € 4;({,), 2, - £y, with 2, ¢ R(4)
(k > 1). Agsume otherwise. To avoid the complexity, we consider, without
Joss of generality, the angular domains in the upper half-plane 2 with
vertices on the real axis .Z and {, = 0 (see the figure); in effect, we may
assume 4 = I', and we have only to consider a conformal homeomor-

phism from D onto #, sending a point of I'—A to co. Without saying
‘the details we may consider the case that there exists a sequence {z}
< 4;(0), #, - 0, Rez;, << 0 (k> 1). The line segments 2, and x,2, are
Pparallel to the sides of 4,(0), respectively. We may assume that the tri-
angular domain with vertices z,, @, and z; does not intersect B(4) for
each k. Suppose that 2,u;, is parallel to 2,u,. Then all triangular domains
bounded by triangles z,x;, #;, (k>1) are similar to one another, There-
fore there exists a eonstant ¢, 0 < ¢ < 1, such that x, = cx, for each k.
Since the open interval (v, #;) on % contains no point of 4 wo have
a contradiction on putting e, = —a, (k>1). Now that we know R(4)
of (2.9) covers;a terminal part of 4,(Z,), we may find ¢, such that Q,(L,)
< B(4) for each s>1,. Since 4 < By, we know that S(z) =@ or

d (K%, 8(2)) = Ly for each z e Q,(Z,)- On the other hand, there is a point

% € q%(m
>t .

with
8 (z) AR (K2, 1/(n+1)) # @

because of {y € F,,,11. This contradicts (K2, 8(z)) > 1/ > 1/(n+1).
The proof is now complete.
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Remark 2.4. In the standard proof (see [11], p. 1061) of a special
cage of Theorem 2.3, without referring to ¥, property (this makes the
proof shorter than ours), one uses the familiar method in the proof of the
Plessner theorem, that is, using of the conformal map from D onto a Jordan
subdomain of D with the rectifiable boundary. However, it is well known
that the Riemann mapping theorem is not true in the Euclidean space
R"™ (n = 3) except for the special cases. Our present proofs of Theorem 2.1
and Theorem 2.3 are available to the proofs of the versions in the open
unit ball in E”. Angular domains are interpreted as cones in the space R
(n = 3). We note that there is a conformal map from the ball onto the
half-space. It is not difficult to see that I'— K (8) for § in Theorem 2.3
is o-porous in the sense of E. P. DolZenko [5], p. 5. However, it appears
to be open to find a subset e of I' such that e is of first category, of measure
zero, not o-porous on I' and that there is no map f (or set-mapping S)
from D into @ satisfying K (S;) = I'—e (or K(8) =.I'—e). If there exists
such an e, DolZenko’s result [5], Theorem 1, extiends strictly Lappan’s [11],
Theorem 1.

3. Continuous set-mappings. Let .4 be a subset of D, and z, & 4.
‘We say that a set-mapping §: D — P (Q) is continuous at 2, relative to A
if, for each ¢ > 0, there exists 6 > 0 such that §(z) < N(S(2), &) for each
2 € M with [z —2,| < 0. We say that § is continuous on # it 8 is continuous
at each point of .# relative o .#. For the sei-mapping §;induced by a map
f: D — Q, the continuity of f means that of S;. However, there is a patho-
logical situation in the general case. Let Q = D, and let §: D — P(D)
be defined by 8(0) =@ and 8(z) = D (2 # 0). Then each N(8(0), &) =G
does not contain S(z) for z % 0, while § is continuous at 0 in our sense.

TaeoreM 3.1. Let 8: D —~P(R), Q being K ,, and assume that there
exists vy, 0 << vy << 1, such that 8 is continwous on each circle |2 = 1, 1o <1 << 1.
Let K(1) be a non-degenerate contimuum in D with K()nl’ =1, and
let R(L) be the set obtaimed by rotation of {(1) by argl around 0. Then
the set

(3.1) {Cel'; 0(8,0) = Cap(8, )}

18 G, and residual on I
Proof. We consider F of (2.2) on setting Q(£) = 0(8,{) and G (&)
= R(£); we denote the resulting set by B (R(1)). By (2.3) we have

(3'2) E(R(l)) = U Enmqm
n,m,q,n
where
Bumgy =1{L €T3 0(8, {)nK}, @ and either S{R, (L)) =9

or d(Ep,, 8(R,(0))) =1/}
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with &,(¢) = K()n{e; le— L1 <1/g}. Since By © Bupgy for 4,< g,
we may restrict ¢ so that r,< 1—g¢~'. We shall prove that each E,,,,
is closed and. of first category on I', whence by (3.2), the set of (3.1), being
equal to I'— E(&(1)), is G, and residual on I

(losedness. Let {; e B,,,,, with {; — {. It i3 easy to see that O(S, {)n
NEL #@. Assume that S(R,(0) =@ with @K%, 8(K,(0)) < 1/n.
Then there exist z,€R,({) and a e 8(%) with d(K,, o)< 1/y. By the
continuity of § on the circle [2| = |2,| we have ;, 2; € 8,({;), 12 = |2,
and e; € 8(z;) such that d(X3,, ¢;) < 1 /5. This contradicts {; & B,

Category. The proof follows on congsidering

M = cH K,(0)
a8 in the prootf of Theorem 2.1.

We next investigate local properties of § at points of J(8) and K (8)
under a-certain eontinuity condition on §: D — P(Q). Let X({, ¢) be aline
segment at { e I" making the directed angle ¢, |p| < = /2, with the radius
e(¢) of D at £. One terminal point of X (¢, ¢) is £ and the other is a point

.of D. By the directed angle we mean the angle at { made by X ({, ¢) and
o(£) such that ¢ >0 if X({, ¢) lies to the right of o({) viewed from an
observer at the. origin.

TEEZOREM 3.2. Let S: D - P(Q), 2 being K, and let {eK(8).
Assume that there exists. 1y, 0 < ro<< 1, such that 8 is continuous on each
ciroular are {# e D; |2—C| =7}, 0<<r< 7,. Then the set

(3.3) {‘73; ol < T [2, OX(C.qv)(S) ) = OA(S; £)}

is Gy and residual on (—n/2; /2). ,
COROLLARY 3.3. Furthermore, if ¢ edJ(S), then the set

(3.4) {p; lpl < n/2, OX(C,fp)(‘s? &) =0(8,0)}
is G5 and residual on (—=[2, w/2).

In effect, we obtain (3.4), because 04(8,¢) = 0(S,¢) at ¢ ed(8).
As i easily seen in the following proof, the continuity described in The-
orem 3.2 may be exchanged by that of § on {#; 2| =7, |g—ol| < 1—¢},
where ¢,1/2 < p<1, is a number depending on ¢ e K (8) and » ranges
as20—1<r< 1.

Proof of Theorem 3.2. We may assume that { =1 e K (8) and
that X(p) =X (1,p) is the chord of a fixed circle touching internally
to I"at 1. The proof is similar to that of Theorem 2.1 with a mirior change.
We remark that (“(8,1) = Oy, (8,1) for each ¢ &(—n/2,n/2). Set

B = {‘Pi lpl < w/2, OA(S’ 1)_0X(¢)(S; 1) # 9}.
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We obtain a decomposition

E = U Enmqr;’

n,Mm,q,n

being similar to (2.3), where

Boman = {3 ol < /2, 04(8,1)nK:, #@ and either §{X,(p)) =@

or d(E%, 8(X,(p))) > 1)

with X, (p) = X(p)n{z; |#— 1] < 1/g}. It is now easy to see that each E,,,,,
i closed and of first category on (—=/2, x/2). We must note that C4(S, 1)
is closed because C(S,1) = C0,(8,1) for each angular domain 4 at
1e K (8).

4. Boundary normality condition. As is well known, Plessner’s the-
orem (see [4], p. 147, Theorem 8.2) depends on the “analyticity” of a func-
tion meromorphie in D in the sense that the extension to quasi-conformal
functions is false; in effect, the Fatou theorem is false for a bounded
quasi-conformal function in D (see [22]). On the other hand, Meier’s
(topological analogue of Plessner’s) theorem is a consequence of a topolo-
gical property of meromorphic functions in the sense that the result may
be extended to quasi-conformal functions [21]. The decisive property
which we shall extract from the above-mentioned will yield some results
on 8: D — P(Q), one of which containg Meier’s theorem (see Corollary 4.4).

The disk D has the non-Euclidean distance

1 |1 —232p] + |21 —2al

( ) v(21; 22) 9 L —2,2,| — |71 — 2]

(214 2, € D).

A gimply connected domain in the plane, conformally homeomorphic
to D, is called a hyperbolic domain; a hyperbolic domain 2 has the non-
Euclidean distance y4( -, +) obtained by the obvious manner. A set-mapping
8: 9 — P(Q) is called normal in 2 if, for each & > 0 we have é > 0 such
Shat R (8(2,), &) > §(2,) for each pair 2,, 2, € P With y4 (2, 2,) < 6. Since 2,
and z, may be exchanged, we have Rt(8 (z,), ¢) © S(#) also. The boundary
normality condition for §: D — P(R) reads as follows:

For each triangulor domain 4 in D such that AnI is one point and

that 8(4) # 8, the restriction of 8 to 4, that is, S: A —P(L), s normal
m A. -

If 8, is the set-mapping from D into the Riemann sphere R, induced
by & meromorphic function f in D, then 8, satisties the boundary normality
condition; the result follows from the theorem of O. Lehto and K. I. Vir-
tanen [12], p. 47, that a meromorphic function in a hyperbolic 2 omitting
three points of R is normal in @. It is easy to see that a meromorphic
function ¢ in @ is normal in @ in the sense of Lehto and Virtanen if and
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-only if ¢ is uniformly continuons with respect to y5 in Z; to prove the “if”»
part we note that R is compact and the family {goT}, T ranging over
all conformal self-homeomorphisms of 2, is equi-continuous in the Fueli-
.dean distance in 2. In the forthecoming Remark 4.8 we shall show the
existence of a multiple-valued function in D which induces the set-mapping
satisfying the boundary normality condition.

Oonsider 8: D — P(£2). A point e I' i§ called a Plessner point of 8
if ¢ e K(8) and 04(8, £) = 2; the set of all Plessner points of 8 iy denoted
by I(8). It is easy to show I(8) = J(8). By an admissible are A at £ eI

‘we mean a conftinuous curve A: 2z =z(f)eD (0 <i< 1), ima(l) =,
=1 .

tangent at £ to a chord of I' at {. We denote by IIn(8, {) the L-principal

-cluster set of S at ¢ (see (1.7)), where £({) is the collection of all admissible

ares /A at ¢, namely, IT;(8, ) = (Y O04(8, £). We have ITx(S, ) = 04(8, ¢)
a4

at each ¢ eI'. A point { e I' is called a Lindeldf point of S if IT.(8, {)
= 04(8, ¢); the set of all Lindelof points of § is denoted by L(8). Since
each angular domain at { e I" contains a terminal part of a chord at ¢,
we can easily show L(8) <« K (8). We denote by Ilx(8, {) the L-principal
cluster set of 8 at {, where £(£) is the collection of all chords of I at {;
plainly, I7x(8, {) > IIx(8, {). A point e I" is called a Meier point of S
it IIx(8, ) = 0(8,¢) # 2; the set of all Meier points of § is denoted
by M(8). It is easy to see M{(S) = J(8). A point ¢ e I' is called a normal
point of 8 if § is normal in each angular domain at £; the set of all normal
points of § is denoted by N(S).

THEOREM 4.1, Let S: D - P(2), and assume that S satisfies the
boundary normality condition. Then

(4.2) L(8)U{I(8)— N (8)} = K(8).

From Theorem 4.1, Corollary 2.2 and Theorem 2.3 follows
COROLLARY 4.2. Furthermore, if Q is K,, then L(8)u {I(S)—2N(8)}
18 B s, residual and a.e. on I
THEOREM 4.3. Let S: D —P(L2), and assume that S satisfies the
boundary mormality condition. Then
M(8YVI(S) =dJ(8).

From Theorem 4.3 and Theorem 2.1 follows

COROLLARY 4.4. Furthermore, if Q is K,, then M (S)UI(S) is G
and residual on I.

We begin with & comparison of non-Tuclidean distances. Weo denote
dyp(2) = |dz|[/(1—)2|%), z € D; thus, it i§ obvious what is meant by dyo(2),
% € 9, 9P being a hyperbolic domain. Further, given & > 0 wo set

Pk) ={eD;1— <k dis(z, 09)},
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where dis(-, -) denotes the Euclidean distance and 82 is the boundary
of 9 in the plane. For each pair of points 2;, 2, € @, the geodesic line
segment in the sense of y,( -, -) connecting 2, and 2, is called the 2-geo-
desic from 2, to 2,.

LEMMA 4.5. Let @ be a hyperbolic domain contained in D. Then for
each pair 2., 2, € D, we have
(4.3) Yp(21y 22) < yg(21, 25).
Further, given k> 0, for each pair z,,z, € D(k) such that the D-geodesic
from z; to 2, 18 contained in D (k), we have
(4.4) va (1) %) < kyp(2r, 2,).

Proof. The first half is a consequence of the prineciple of hyperbolic
metrics: dyp(2) < dyg(?) (2 € 2) (see [8], p. 326-327). Integrating both
sides of the inequality along the Z-geodesic from 2z, to 2z, we have (4.3).
To obtain (4.4) it suffices to show

(4.5) dyg(2) < kdyp(2)

for each 2z € 2(k). Integrating both sides of (4.5) along the D-geodesic
from 2, to 2, we obtain (4.4). To prove (4.5) we apply the result due to

W. Seidel and J. L. Walsh [17], p. 133, Theorem 2, (4.4), to a conformal
homeomorphism 2z = f(w) from D onto 2, and we obtain

dis(z, 092) < |f (W)L —w?) (2 €2).
“Then, letting w = ¢(2) be the inverse of f, we have for z ¢ 2(k),

_ g @ldel _ \de]
T 1—1g(2)) T dis(z, 09)

dyq(?) < kdyp(2).

Remark 4.6. Assume that S: D —P(Q) is normal in D. Then
N (8) = I, the result being a consequence of (4.3) applied to each angular
domain 2 = 4. Therefore, it follows from (4.2) that L(§) = K(S). For
an application of this equality for normal S, we refer to [24].

Proof of Theorem 4.1. Since L(S) = K(S) and since I(8)—N(8)
< K (8), we obtain the inclusion c— in (4.2). To prove the inverse > we
first assert

(4.6) K(8)—L(8) « I—N(8).

Actually we have an admissible arc A4 at ¢ e K(8)—L(8) such that
C4(8, £)—C4(8, &) contains a point a. Let X (= X (¢, ¢)) bea line segment
at £ tangent at ¢ to 4, and let 4 be an angular domain at ¢ such that 4nX
s @. Weo then choose an angular domain A’ at { and a constant & > 0
such that A'AX # @ and 4’ < A(k), where A(k) = 2(k) with 2 = A.
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It follows form the well-known geometrical property (see [18], p. 511,
Theorem X1I.2) that there exists a natural number n, such that a terminal
part of (1/n,)-neighborhood of X in y5(-, +) is contained in 4’, and further
that, for each n > n,, the (1/n)-neighborhood of X in y,(-, ) contains
an angular domain 4, at { satisfying 4, nX # @ and 4, = 4'n{z; [2—¢|
< 1/n}. Since ¢ e K (8), we know that a e C4(8,¢) = C4 (8,¢) (n>=n,).
Therefore there exist z, € 4,, «, € 8(z,), such that d(a,, a) - 0. Then
we may find 2, € An4, such that y,(2,,#,)< 1/n and the D-geodesic
from z, to 2 .is contained in 4’ (n = n,). By (4.4) applied to 2 = A with
A" c A(k) we obtain

(4'7) Ya (zan zgz) < ky.l)(zn? z;v.) < k/n (% ; Wfo) .

Assume that ¢ € N(S). Since 8 is normal in 4, it follows from (4.7) that
we have a subsequence {2, } of {z,} and points o, € 8(2,,) such that d(a,,, a)
—0 a8 #; > oo. We thus have a confradiction that « € C,(8, {). This
completes the proof of (4.6). We next prove

(4.8) E(8)—L(8) < I(8),

which, combined with (4.6), implies K(S)—L(8) < I(S)— N (8), whence
L(8)V{I(8)—N(8)} » K(8) as desired. Assumne that there is a point
te K(8)—L(S)—I(S). Since ¢ ¢ L(S8) we have an admissible arc 4 at £,
with the line segment X at £ as a tangent at £, such that ¢4(8, &) —C4(8, {)
contains a point a. Since ¢ ¢ I(S) and since { € X (8), O n(8, £) # Q for
cach angular domain A4’ at ¢ with 4"’ ~X # @. Hence we may find an
angular domain A at { with 4nX # @ and -S(_A) # Q. Consequently, S
is normal in. 4. The rest of the proof is now the same as that of (4.6).

Proof of Theorem 4.3. Since M (8) = J(8) and I(S) < J(8) it
follows that I (S)VUI(S) = J(8). The proof of the inverge inclusion is
the same as that of Theorem 4.1 with a slight change. Agsume that there
is a point { eJ(8)—{M(S)vI(8)}. It follows from ¢ e J(8)—I(8) that
C(8, ) # Q. Since ¢ ¢ M(S) we may find a segment X at ¢ such that
C(8,t)—Cx(8, ) contains a point a. Since (e (8)—I(S) we may
find an angular domain A at ¢ such that 4nX # @ and that S(4) # £,
whenee S is mormal in 4. By the same reasoning as in the proof of The-
orem 4.1, we have a sequence {#,} c X, #,, ¢ and o, e 8(z,) with
d(a;j, a) — 0 as #; - co. Wo thus have a contradiction that a € Ox(8, {).

We restrict our topies to a funetion f meromorphic in D. For simplicity
we denote I(f)=1I(8;), N(f) = N(8), ete., where S;: D —P(R)
induced by f, R being the Riemann sphere endowed with the chordal
distance (-, -). Anderson’s definition [1] of normal points of f reads as
follows. A point { e I' is called a normal point of f provided that for each
angular domain 4 at ¢ and for each sequence z, € 4 converging to ¢,
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there exists 7,, 0 <7, <<1, depending omn {¢,} such that the family of
functions

=Ry
— P
1755 een

is normal in [2] <7, in the sense of P. Montel, the convergence being

taken in x(-, ). We denote by N ,(f) the set of all normal points of f
in. Anderson’s sense. Anderson and Noshiro proved

(4.9) L(f) = LUHYVI(S) =N 4(f)}-

There is another notion of normal points introduced by §. Dragosh [7],
Pp. 60. According to him, a point { e I' is called a normal point of f if, for
cach angular domain 4 at £, and for each sequences {z,} and {z;,} in 4
with yp(2, 2;) = 0,limf(2,) = o« implies limf(z,) = «. The set of all
normal points of f in the sense of Dragosh is denoted by Ny, (f). We show

THEOREM 4.7. For f meromorphic in D, we obtain
{4.10) N(f) = Np(f) = N(f).

Proof. (Added in proof. I found that the equality N,(f)
= Ny, (f) in (4.10) had been pointed out by H. Yoshida at p. 60 of
his pane: [25]. His proof is different from curg). It is well known
that f is normal in an angular domain 4 at ¢ if and only if

, IO
A b AT AR
(see [12], p. 56, Theorem 3). We assert that £ e N (f) if and only if
(L— =13 f ()]
{4.12) sup{ T ,zeA}< + o0

for each angular domain A at {. We then obtain N,(f) = N(f) by the
characterization of N,(f) due to Dragosh [7], p. 60. We firgt assume £ e
€N (f), whence (4.11) for each 4 at {. We can choose 4, > dat fand k> 0
such that 4 = 4,(%). Then by (4.5) with 2 = 4, we have

|dz| k|dz|
<

dyp(2) dy 4, (2)

for each z € A. Therefore (4.12) follows from (4.11). For the proof of the
converse, we have only to remember dy,(z) > dyp(2) for all 2z € 4. Since
|dz|[dv4(2) < 1—|2|% 2z & 4, from (4.12) follows (4.11). To prove N ,(f)
c N(f) we assume that there be ¢ e N, (f)—N(f). Then we have an
angular domain 4 at £, a positive number &, and two sequences {z,}, {.}
in A such that y,(2,,2,) =0 but x(f(z,),f(z,))>e (n>=1); we may
ASSNING 2, 2, — ¢ since y,(2,, 2,) = 0 by (4.3). Since ¢ € N, (f) the family
of functions

L3
.

1—feft =

22,
1-+z,2

T, (2) =f( ) (1)
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i normal in a disk |¢| < r, (we note that the family {g(2)} is normal in
l2| < 7, if and only if {g(—=2)} is normal in, |z| < 7,). Setting w,, = (2, —2,)/
[(1—Z,2,) we have Z(Fn(wn)) -Fn(o)) = X(f(z;a)if(zn)) >e& (n>1) with
w,, — 0. This contradicts the continuity of the limiting function of a sub-
sequence of {F,} in |2| < 9. We next show N ,(f) o N(f). For each 4 at
e N(f) and for each sequence z, € 4, converging to {, we may find
1y, 0 < 19<< 1, such that w = (¢+42,)/(L+7,2) e d; for all 2, |o| <7,
where 4, o 4 is an angular domain at ¢. Setting I, () = f((¢+2,)/
[(1+Z,2)), 2| < 7y, Wwe have

2 O I & el ol 01 )t (L= [ol®) If" (w)l

T+ T, ()0 (L—J212) (L+1F(w)?) < {=r 14 [f(w)]?

Since ¢ e N (f) and since w € 44, it follows from (4.12) for 4, combined
with the Marty criterion (see [10], p. 1568), that {F,} is normal in |z| < »,.
This completes the proof of Theorem 4.7.

Now, (4.9) follows from (4.2) and (4.10).

Remark 4.8. A function g defined in D is called quasi-conformal
(simply, KQC, K > 1) if g is of composed form Gou, where @& is a single-
valued meromorphic function in D and u is 2 KQC homeomorphism from D
onto D (see [13], p. 260). A KQC algebroid (simply, KQCA) function f
in D is a multiple-valued function in D defined by an algebraic equation

(4.13) rR+a@f" 7 @)+ . tae) =0 (n>1),

where a; = bjop (1<j<n) are KQC functions in D, b; being - mero-
morphic in D and x being a KQC self-homeomorphism of D common to
all j. A 1QCA function in D is an algebroid function in the usual sense;
further, if n = 1, then the function is nothing but a single-valued mero-
morphic function in D. Now, a KQCA function fin D defines a set-mapping
8;: D — P(R), on assuming a e 8y(z) if and only if there cxists f;(2) = q,
where f;(2) (1 <j<n)are n branches of f at z e D. We shall show that S,
satisfies the bBoundary normality condition. We note that the multiple-
valued funetion 1/(f—f) with a complex constant g is again KQCA.
Since each angular domain at { € I' is conformally equivalent to D, we have
only to show that a bounded KQCA function f in D defined by (4.13)
induces the set-mapping §,normal in D in our sense. The word “bounded?”
means that there is B > 0 such that S;(D) « N(0, B). The function f
is “of composed form”, go u, where ¢ iy a bounded algebroid function with
8,(D) « N(0, B) defined by

7" (2) +b,(2) 9" (@) + ... -+b,(2) = 0.

By the Schwarz lemma [23], p. 284, Lemma 2, applied to ¢ in cach disk
D(z) = {2; |2 —20] < 1— 12|}, % € D, we have

8,(2) < [R(8,(20), (1 — lool) ™" |2 — 2| '1")] -
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for 2 € D(z), where the bar means the closure and ¢ > 0 is a constant
depending only on n and B (we note that the irreducibility of the equation
in [23], Lemma 2, is indeed not used in the proof of the lemma). Now, given
0,0 < p<1/3, the disk U(z, o) = {2; [z —2,l/IL —Z2| < o} *is contained.
in V(z) = {25 le—2l < o(1— [2l®)/(1—glz))} (see [18], p. 511, (i)), and
V(z) is contained in. D(z). Further, for ze (2, p), |2—2l/(1— |2}
< o(1-+120) /(1 —gl2l) < 3, whence

8,(2) = [MI8,(z), 3¢ o™~
Therefore §, is normal in D. On the other hand, ux satisfies

| (=) — pl2) /11— e (zo) p(2)) < 4 IZ—%WK ll—Eozl"”K

(see [13], p. 68), whence u is uniformly continnons with respect to ypl(+y ).
Therefore, it is not difficult to see that the “composed” set-mapping
8; = 8,04 is normal in D.

5. Horocyclic versions. A right horocyclic are (RH-are) at & e I' is

a continuous curve h*({):z = 2(f) e D (0 <t < 1), limz(t) = ¢, such that
' -1

there exists ¢, 0< o<1, with Im{;~'2(1)) < 0 and |2(t)—(1—o)¢] = o
for all ¢ € [0, 1). A right horoeyclic angular domain (RH-angular domain)
at £ el'is a Jordan domain H*({) < D whose boundary consists of the
point ¢, two RH-ares at ,h(): zy =2(1) (0<i< 1), j =1,2, and
the D-geodesic from #,(0) to 2,(0). A left horocyclic arc and a left horo-
cyclic angular domain at { e I" are defined dually. If we do not specify
whether a right or a left horocyeclic arc (angular domain) at £ is in ques-
tion, we call it simply H-arc (H-angular domain) at £, and denote it by
h(¢) (H(Z)). An admissible tangential arc at € I' is a continuous curve
Ap: 2z =2(f) e D (0 <t < 1), imz(t) = {, tangent at { to an H-arc at £.
11

If we replace the ferm “angular domain” by “H-angular domain?”
in the definitions of K (8) and J(S), we have the horocyeclic versions of
Theorem 2.1, Corollary 2.2 and Theorem 2.3. Theorem 3.2 and Corollary 3.3
admit their horocyeclic versions, if we further replace “chord” by “H-arc”.
For the proof of the horocyelic Theorem 2.3 we follow the proof of Theo-
rem 2.3 up to the stage of the comfradictory assumption that 4 is of
positive measure. Let P be a perfect set of positive measure in 4. If P
is dense on an open arc of I', the proof is easy, while if P is nowhere dense
on I', then thanks to the result of Dragosh [6], p. 64, Lemma 5, the domain

R(P) = U B,(0)
- {eP

with R, () = H,({)n{z; 1 —277< |¢| < 1}, contains a terminal part
of each open disk internally tangent to I" at { for a.e. { e I. This contra-
d.icts .P (o= an(n+]) .
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We now remember the definitions of “the boundary normality condi-
tion”, and of the sets I(8), L(S), M (8) and N (8). If, in addition to the
horocyelie versions of J(S) and K (8), we further replace the terms “angu-
lar domain?, *“chord of I' at { € I'” and “admisgible arc” by the terms
“H-angular domain”, “H-arc at {” and “admissible tangential are?”,
respectively, we obtain the horocyclic Theorem 4.1, Corollary 4.2, The-
orem 4.3 and Oorollary 4.4. Thus, for example, { i8 a horocyclic Lindelof
point of § if

MC4, (8,8 = UChy(8, L),
4, H()

where /., ranges over all admissible tangential arcs at ¢ and H ({) ranges
over all H-angular domains at {. We note that the essentials of the proofs
of the versions lie in the comparison (4.4) of the non-Euclidean distances
in the horocyclic form, that is, in

Lemwma 5.1. (1) Let H(t) be an RH-angular domain and h* () be
an RH-arc at & such that HY(Z)nh*t () = @. Then we may find an RH-
angular domain H (L) at ¢ and a coazstant k> 0 such that H (¢) = H*(¢),
HF (&) nht (L) # B and
(5.1) YH*() (21 22) < kyp(z1y 2s)
for each pair 2,2z, € H (), provided D-geodesic from z, to 2, is contained
in Hi (). (2) Let HY () be an RH-angular domain at & € I'. Then we may find
an RH-angular domain H (&) at ¢ and a constant & > 0 such that H (£) o H} (£)
and (5.1) is. valid. (3) Given an RH-arc h*(L) at ¢ e I, each e-neighborhood
of h* (%) in the distance yn(-, *) (¢ > 0) contains an RH-angular domain
at . Comversely, given H™* (L) and h* (L) ot ¢ with HY(E)nh™({) # O, we
may find &> 0 such that the e-neighborhood of a terminal part of h*(L’)
in the distance yp(-, *) 28 contained in H™({).

We remark that although we describe the lemma in the RH form, the
same is true for the LH case. For the proof we may consider the case { = 1.
{1) The image H of HT(1) by the map w = i(1+2)/(1—2) contains the
‘half-strip H' = {w =a+iy;a< 2,b<y<b+4p} in the upper ]m]i—
plane . By a short caloulation we have

7 |1 — £2||§| [dw]
2p (Im £)(1— |£]2) '

where & = &(w) - —exp {(n/p)(¢ —w)}, a = a+1b. Therefore, for w = x+
+iyeH', '

dyg (w).=

|l — &2
Ay )y, (w) = S (T )
mil— g y

TP =&Y sim{(x/p)(b—y)
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It is now easy to choose a hali-strip H, = H' with H,ni # @, 1 being
the image of h*(1), such that dyg (w)/dy(w) < + oo (w € H,), which,
combined with the principle of hyperbolic mefrics, means that dyg(w)
g kdy #(w) for each w e H,, where k > 0 i a constant. The inverse image

H} (1) of H, is the desired, (2) The proof is sm11lar to the above. (3) The
f1rst half. The image of the disk

#;

by the map w = 4(1 4 2)/(1 —2) contains the disk d(a) = {ew; lw—i(1+a)/
[(1—a)| < [2B/(1+ E)1(L—¢)/o}, where h*(l) lies on |e—(1—p)l = o.
As a-—>1 along h*(1), the disks J(a) sweep a half-strip of with
[4R/(L+R)](1 —o)/e in #, whose inverse image is the desired RH-angu-
lar domain. The proof of the second half is similar, with a few modifica-
tions.

al/[1—ad|< R}, O0<R<1, aeht(l),
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