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Asymptotic behavior of solutions of non-linear differential equations
with deviating arguments via non-standard analysis
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Abstract. We discuss the asymptotic behavior of solutions of the following n-th order
differential equation with deviating arguments (n 2> 2)

E(d} XN +3bf(xTg, (0]).....x[gn(N]) = hin), &= %1

by using non-standard techniques. Under some assumptions on b, f and h, we proved some
theorems about oscillatory, non-oscillatory and unboundedness.

1. Introduction. In the last few years, there has been an increasing
interest in the study of the asymptotic behavior of solutions of differential
equations with retarded arguments. For example, we refer to Chen and Yeh
[1], Kartsatos [2], Kusano and Onose [5], Staiko and Sficas [8]. _

Non-standard analysis was introduced in oscillatory theory by Komkov
and Waid [4] and Komkov [3]. They considered the following differential
equations

(a(t) p(x)x'Y +b(t) F(x) = h(t)

and
(%) XD () +F(t, x(t), x'(£),...,x" V(1)) = h(1).

In this paper we improve their results and give some new criteria for the
asymptotic behavior of solutions of the following n-th order differential
equation with deviating arguments (n = 2)

E(5) X" (1) +8b(t) f(x[g,(1)],...., x[gm(D]) = h(1), &= =+1

by using non-standard technique, in the frame-work of Robinson’s theory
[6], [7]. Let R* denote the non-standard extension of the real line R, which
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has the property that sentences formulated in language & are true in R* if
and only if they are true in R (see [6]). R is a subset of R*. R* also contains
infinitesimal numbers and infinite numbers which are not in R. An infinite
positive (negative) number is a non-standard number which is greater
(smaller) than any real number. We shall denote by R% ., and R* _, respecti-
vely, the set of the infinite positive and negative numbers. The reciprocal of
an infinite number is called an infinitesimal number. If x is a real number,
then we call x a standard number of R*, otherwise it is called a non-standard
number. RY denotes the set of the elements of R* which are bounded in
absolute value by a standard number. If x, y are elements of R* such that
x—y is an infinitesimal, we shall say that x is infinitely close to y, and denote
this by x =, y.

Let I = [tq, o) for some fixed t, > 0. Throughout this paper, we assume
that the following two conditions always hold:

(@) b, h,g;eC(, R), b(t)>0 and limg;(t)=o0 for i=1,....,m,

1—=x

(b) feC(R™ R).
The following lemmas are due to Komkov and Waid [4].

Lemma 1. A standard function x(t), te€l, is oscillatory if and only if x(¢),
te R*, vanishes for some teR% .

LemMma 2. A standard function x(t) is unbounded if and only if
|x(t) e RY . for some teR% ..

of ]
LemMma 3. [g()dt converges if and only if jzg(t)dr=10 for any t,,

t t
reRt, ([7), p. 75).
Lemma 4. If X (1) <0 (> 0) and is bounded away from zero on I for

1

some n> 1, then lim x(f) = —oo0 (+ ) for‘ any x(t)e C"(I, R).

t—7r

!
Lemma 5. Let lim [g(s)ds= 4o (—o0). Then for any AeR¥,

=+ ‘0

A>0(<0), and any t; >ty, t,€R*, there exists t,eR* t,>1t,, such
i

2
that [g(t)dt > A (< A). Moreover, for any t;eRY, t,cR%, (R*.), we
t

‘l

4
have [g(t)dreR% . (R* ).

f

2. Main results.
THEOREM 1. Let
(C1) f(¥1,---»Ym) be a non-decreasing function with respect to yq,...,Vm
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and
¥$;>00=1,2,....,m)=f(¥1, Y2 +--» Ym) > 0,
Yi<0(i=1,2,...,m)=f(¥1s Pas-e0s Ym) <0,

x

(C,) [ h(r)dt converge,

Ty

and
(Cy) }Lb(t)dt = 00.

0
Then every solution of E(1) cannot be bounded away from zero.

Proof. Assume to the contrary that there exists a solution x(z) of E(1)
such that x(t) is bounded away from zero on I. Without loss of generality,
we assume that x(z) > K > 0 for some standard number K. Condition (a)
implies that there exists a t; >ty such that .

x[g;:(t)] > K
for t >, and i =1,...,m. Hence, by (b) and (C,), we have
(1) f(x[g:(],....x[gm(D]) = f(K,...,K) =k >0

for t = t, and particularly for all reR% ,. It follows from (C,) and Lemma 3
that

:[11 (H)dt =40
for any ¢, neR% ,. Hence
@ ihmdt <1.
By (1), (2) and the fundamental theorem of calculus

3) X" (y) = x""”(c')+§[h(r)—b(t)f (x[g1 )],..., x[gm(0])] dt

_ ]
<x""V(E)+1—k [b(t)dr.
) 3
Regarding ¢ as fixed, by (C;) and Lemma 5, we can choose n so that
"
4) fo()ydt > k= [24+ X"V (&)].
g

From (3) and (4), we have
(5 x" () < ~1
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for all n satisfying (4). Since x(f) is positive, (5) implies that x(f) changes sign
for some te R% ... Therefore, by Lemma 1, x(t) is oscillatory, a contradiction.
This contradiction proves our theorem.

Remark 1. In Theorem 2.1 of [3], Komkov proved that if (C;) holds

and
Vi F(t, sy >0 if y, #0

for t large enough, then every solution of (*) cannot be bounded away from

zero.
This is wrong. The following is a counterexample.

ExampLE 1. The differential equation
(6) X' () +¢7 2 x (O {1+ ¥ (012 =F27 2450777

satisfies all the conditions of Komkov's theorem. But the solution x(t) = ¢t'/?
of (6) is bounded away {rom zero.

CoroLLARY. Under the assumptions of Theorem 1, every solution of E(1)
is oscillatory or such that lim inf|x(t)] = O.

t— oG

ExampLE 2. The differential equation

) x"(t)+2x(t) = 2(sint—cost)e”"

satisfies all the conditions of Theorem 1. Hence every solution x(t) of (7) is
oscillatory or such that lim inf|x ()] = 0. In fact, x(f) = e”‘sint is an oscilla-

[ g v]

tory solution of (7).
THEOREM 2. Let

(Ca) lim inf b(t) = ¢ >0,
t—
. h{(r)
(Cs) 'llng b~ + 00

hold. Then every solution of E(J) is unbounded.

Proof. Assume to the contrary that there exists a solution x(t) of E(9)
which is bounded. Then x[g;(f)] is bounded for i =1,...,m. From (C,),
we have

2x(r)  x™(1) k(D)

This and (Cs) imply that x™(t)e R% . for all teR% .. By Lemma 4, x(f) is
an infinite positive number for all te R% ., a contradiction. This contradic-
tion completes our proof.
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ExampLE 3. The differential equations
(8) x"()—2"te*x(t—m) =2"1¢,
©) Y () +y(r) =247 17302

satisfy all the conditions of Theorem 3. x(t) = ¢ and y(r) = 1/ are solutions
of (8) and (9), respectively, which are unbounded.

Tueorem 3. Ler (C,) and

(Co) 1iminf2—8>r> 0,
(C,) fO,...,00=0

hold. Then no nonoscillatory positive (negative) solution of E(1) (E(-1))
approaches zero.

Proof. We only prove the case E(1). Let x(t) be a nonoscillatory positive
solution of E (1) which approaches zero. Then there exists a t; > t, such that
for all t > ¢,

S(x0g: (0)],....x[gn(D]) <47 'r.
Since

(M (t)
b(t)

> 47427 r=4"%>0

h
= —(x [91 (t)]sv")x[gm(r)])-*-gg%

2071 X1 >

for t > t,. This and Lemma 4 imply that x(¢) is an infinite positive number
for reR* ,, a contradiction. This contradiction completes our proof.

ExampPLE 4. The differential equations
xX'(y+e"x(t—m=2e"", x'"(N+x()=2""

satisfy conditions (C,) and (C,), but do not satisfy (C4). These equations have
x(1) =e™' as a solution which approaches zero.

ExampLE 5. The differential equation
X' ()+t 74 [x()]P=2"34+178

satisfies conditions (C¢) and (C,), but does not satisfy (C,). The equation has
a non-oscillatory solution x(f) =t~! which approaches zero as t — oc.

ExaMPLE 6. The differential equations
(10) x"()+x(r) = 1,
(11) yo—y@) =1
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satisfy all the conditions of Theorem 3. x(f) = 14e™" and y(f)= —1—e™'
are non-oscillatory solutions of (10) and (11) respectively, which satisfy
limx(t) =1#0and limy(H=-1=#0.

[ e 4 = x
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