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Note on a functional equation

by A. SMAIDOR (Katowice)

Abstract. Let f, ¢ be given decreasing functions on [a, b], let g be an involutory
function and let f(£) = &. The general monotonic solution of the equation

plf(@)] = glp(@)]
is given by the formula
p(z) for z¢[a, &],
p(z) = {
g(vif)]) for wel[&, 0],
where y is an arbitrary monotonic function such that y(£) = ¢[y(£)] and y[f2(x)]
= yp(z) for ze[a, £].

The object of this note is a study of the existence of monotonic
solutions and of continuous solutions of the equation

(1) p[f(@)] = glp(@)],
where :
(H,) fis a given strictly decreasing and continuous function on [a, b]
such that
f([a, b]) < [a, b],

(H;) ¢ is a given decreasing and involutory function on [a, b], i.e.
g*(x) =« for every xe [a, b].

The existence of monotonic solutions and of continuous solutions
of functional equations of the first order has been investigated in many
paper (cf. the references in [1] and [2]).

The following lemma is obvious.

LEMMA 1. Let f and g be defined on a set E, f(E) c E, g(E) < E, and
let g be an involutory function on E. If a function ¢ satisfies equation (1)
on E, then this funclion satisfies the equation

o[ (2)] = ¢(2).

LEMMA 2. Let f and g be defined on a set E, f(E) c E, g(E) < E, and
let g be an involutory function on E. If functional equation (1) has an in-
vertible solution ¢ in E, then f is an involutory function.
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This lemma is a simple consequence of Lemma 1.

LEMMA 3. Let f and g be defined on a set E < R, f(F) c E, g(F) c E,
and let g be a decreasing involutory function on E. If functional equation (1)
has a strictly monotonic solution in E, then is strictly decreasing in E.

Proof. The function g is decreasing and involutory; therefore g is
strictly decreasing (cf. [1], Chapter XV, § 1). Suppose that ¢ is a strictly
increasing solution of (1) and # <y, x, y ¢ E. Then ¢(z) < ¢(y)and according
to (1) we have

elfy] =gle)] < glelx)] = o[f(@)]

because ¢ is strictly decreasing. But ¢ is strictly increasing; fherefore

fy) <fl=).

This shows that f is strictly decreasing.
If ¢ is a strictly decreasing solution of (1), then ¢, = —¢ is a strictly
increasing solution of the equation

w1l f(@)] = g1 lei ()],
where ¢,(z) = —g(—=z). The function g, is decreasing and gi(z) = 2.
Thus the assertion results from the first part of the proof.
DEFINITION 1. Let hypothesis (H,) be fulfilled. For z¢ [a, b] we write
<z, (y) =y},
Z =min{ye[a,d]:y > 2, f}(y) = y}.
If f2(x) # «, then

¢ = max{ye[a,b]:y

z<z<T7T.

Since f2 is strictly increasing, we have

& = f2(2) < (o) < f2(3) — 7,
whence

(2) o< f{r) <Z.

In this way we have proved
LEMMA 4. Let hypothesis (H,) be fulfilled. If f2(x) # x, then inequality
(2) holds.
LEMMA 5. Let hypothesis (H,) be fulfilled. If f*(z) # =, then the se-
quence f*"(z), n = 0, +1, +2,..., is monotonic and either
limf*(¢) =% and Hmf™"(z) =2
n—o00 n—o00
or
limf**(#) =& and limf*"(z) = Z.

fi—00 n—o00
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This lemma is a simple corollary of Theorem 0.4 in [1].

It is easy to see that Lemmas 1, 4 and 5 imply

LEMMA 6. Let hypotheses (H,) and (H,) be fulfilled. If ¢ i8 a monotonic
solutions of (1), then for every xze [a, b] such that f2(x) # x the function ¢
18 constant on the interval (x, Z).

If hypothesis (H,) is fulfilled, then there exists a point &€ (a, b) such that

(&) =¢&.
Then

f(la, &]) = [£,8] and  f([&,b]) < [a, &].

If ¢ is a solution of (1), we have

gn) =mn
Jor n = @(£).
DEFINITION 2. ¥ is the class of real-valued monotonic functions y
on [a, £] such that

glv(&)] = »(é),

where f(£) = &, and v is constant on (¥, Z) whenever & < Z.

THEOREM 1. Suppose that hypotheses (H,) and (H,) are fulfilled. Then
the formula

(3) o (@) p(x) Jor ze[a, £],

~lwlf@))  for me [, b1,

where vy is an arbitrary function from the class ¥, determine the general
monotonic solution of (1) on [a, b].

Proof. Suppose that y e ¥is decreasing. The function ¢ (z) = g(y Lf(m)])
is a superposition of three decreasing functions; therefore ¢ is decreasing
on [&, b]. But y is decreasing and y(&) = g(p[f(£)]); hence ¢ is decreasing
on [a,b].

Let ze[a, £]; then f(x)e [£, b]. According to formula (3) we have

4) p(@) =y(@) and ¢[f(2)] = g(p[f*()]).
If f(x} = =z, then by (4) we obtain (1). If f?(x) #* , then we have
(5) p[f(2)] = p(2)

because ye ¥. Formulas (4) and (5) imply (1). _
Let ze[&, b]; then f(z)e [a, £]. According to formula (3) we have

(6) ¢(@) = gly[f(@)])

and

(7) ¢[f(@)] = v[f(@)].
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From (6) and (7) follows (1). This completes the proof of the theorem when
y is decreasing.
On the other hand, if the function ¢ is a decreasing solution of (1), then

Y = @lia,g

v(&) = glv(£)]

and, according to Lemma 6, y is constant on (z, ) if f2(x) +# «. Therefore
v belong to Y.

Let ze [£, b]; then f2(x)e [£, b] and f(z)e [a, £]. From (1) we obtain
o[ (@] = g(e[f(@)]) = g(v[f(2)]).

According to Lemma 1 we have
¢(@) = ¢[f*(@)] = g(y[f(2)])-

Hence formula (3) holds. This prove that formula (3) defines the general
decreasing solution of (1) on [a, b].

For increasing solutions of (1) the proof is similar.

Similarly as Theorem 1 we can prove the following

THEOREM 2. Suppose that hypotheses (H,) and (H,) are fulfilled and f
is an involutory function. Then formula (3), where y is an arbitrary invertible
Sfunction from the class ¥, determine the general siriclly monotonic solution
of 1) on [a,b].

LEMMA 7. Let hypotheses (H,) and (H,) be fulfilled. If ¢ is a continuous
solution of (1), then for every xe [a,b] such that f*(x) # = the funclion ¢
i8 constant on [z, Z].

Proof. Let # < 7; then according to Lemmas 1 and 4 we have

(8) ¢(z) = o[f"(@)] = o [f~"(®)].

The continuity of ¢, formula (8) and Lemma 5 imply

is decreasing,

¢(z) = ¢(Z) = ¢(2).

COROLLARY. Suppose that hypotheses (H,) and (H,) are fulfilled and the
set

A = {ze[a,b] :ﬁ(w) = z}

has a finite derived set A%, If @ i8 a continuous solution of (1), then ¢ is
constant.

-Proof. We denote by B the set
{e[a,b]:f2(x) # x}.
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The set A has a finite derived set; therefore the set B is non-empty. Let ¢
be a continuous solution of (1) in [a, b]. The set B is open; therefore ac-
cording to Lemma 7 there exists an interval (¢, d) such that ¢ is constant

n (¢, d). The function ¢ is constant on the closed interval [¢, d], because
@ 18 a continuous function.

We suppose that d < b. If e = min{ze A: x > d} exists, then according
to Lemma 7 the function ¢ is constant on [d, e]; therefore ¢ is constant
on [¢, e].

If ¢ does not exist, then there exists a positive number J such that
the set (d, d+ 6)n A% is empty, because the set A? is finite. It is easy to
prove that there exists a decreasing sequence {d,} such that

An(d,d+6) = {d,, d,, ...}

and

lim d, = d.

n—>00
According to Lemma 7 the function ¢ is constant on the intervals [d,, d,],
[ds, 4.1, ... Hence ¢ is constant on [d, d,]. The function ¢ is cgntinuous,
whence ¢ is constant on [d, d,]; therefore ¢ is constant on [¢, d,]. This
proves that if d < b there exists a d, > d such that ¢ is constant on [e¢, d,];
therefore ¢ is constant on [¢, b]. The proof of the face that ¢ is constant
on [a, c] is similar.

DEFINITION 3. ¥, is the class of real-valued continuous functions y
on [a, £] such that

gy ()] = »(§),

where f(£) = &, and y is constant on [x, T] whenever z < Z.

THEOREM 3. Suppose that hypotheses (H,) and (H,) are fulfilled. Then
Jormula (3), where v is an arbitrary function from the class ¥,, determine
the general continuous solutions of (1) on [a, b].

The proof of this theorem is similar to the proof of Theorem 1.
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