Note on a functional equation

by A. SMAJDOR (Katowice)

Abstract. Let f, g be given decreasing functions on [a, b], let g be an involutory function and let $f(\xi) = \xi$. The general monotonic solution of the equation

$$\varphi[f(x)] = g[\varphi(x)]$$

is given by the formula

$$\varphi(x) = \begin{cases} \psi(x) & \text{for } x \in [a, \xi], \\ g(\psi[f(x)]) & \text{for } x \in [\xi, b], \end{cases}$$

where ψ is an arbitrary monotonic function such that $\psi(\xi) = g[\psi(\xi)]$ and $\psi[f^2(x)] = \psi(x)$ for $x \in [a, \xi]$.

The object of this note is a study of the existence of monotonic solutions and of continuous solutions of the equation

$$\varphi[f(x)] = q[\varphi(x)],$$

where:

 (\mathbf{H}_1) f is a given strictly decreasing and continuous function on [a,b] such that

$$f([a,b]) \subset [a,b],$$

 (H_2) g is a given decreasing and involutory function on [a, b], i.e.

$$g^2(x) = x$$
 for every $x \in [a, b]$.

The existence of monotonic solutions and of continuous solutions of functional equations of the first order has been investigated in many paper (cf. the references in [1] and [2]).

The following lemma is obvious.

LEMMA 1. Let f and g be defined on a set E, $f(E) \subset E$, $g(E) \subset E$, and let g be an involutory function on E. If a function φ satisfies equation (1) on E, then this function satisfies the equation

$$\varphi[f^2(x)] = \varphi(x).$$

LEMMA 2. Let f and g be defined on a set E, $f(E) \subset E$, $g(E) \subset E$, and let g be an involutory function on E. If functional equation (1) has an invertible solution φ in E, then f is an involutory function.

This lemma is a simple consequence of Lemma 1.

LEMMA 3. Let f and g be defined on a set $E \subset R$, $f(E) \subset E$, $g(E) \subset E$, and let g be a decreasing involutory function on E. If functional equation (1) has a strictly monotonic solution in E, then is strictly decreasing in E.

Proof. The function g is decreasing and involutory; therefore g is strictly decreasing (cf. [1], Chapter XV, § 1). Suppose that φ is a strictly increasing solution of (1) and $x < y, x, y \in E$. Then $\varphi(x) < \varphi(y)$ and according to (1) we have

$$\varphi[f(y)] = q[\varphi(y)] < q[\varphi(x)] = \varphi[f(x)]$$

because g is strictly decreasing. But φ is strictly increasing; therefore

$$f(y) < f(x)$$
.

This shows that f is strictly decreasing.

If φ is a strictly decreasing solution of (1), then $\varphi_1 = -\varphi$ is a strictly increasing solution of the equation

$$\varphi_1[f(x)] = g_1[\varphi_1(x)],$$

where $g_1(x) = -g(-x)$. The function g_1 is decreasing and $g_1^2(x) = x$. Thus the assertion results from the first part of the proof.

DEFINITION 1. Let hypothesis (H₁) be fulfilled. For $x \in [a, b]$ we write

$$\underline{x} = \max\{y \in [a, b]: y \leqslant x, f^2(y) = y\},$$
 $\overline{x} = \min\{y \in [a, b]: y \geqslant x, f^2(y) = y\}.$

If $f^2(x) \neq x$, then

$$x < x < \overline{x}$$
.

Since f^2 is strictly increasing, we have

$$\underline{x} = f^2(\underline{x}) < f^2(x) < f^2(\bar{x}) = \bar{x},$$

whence

$$\underline{x} < f^2(x) < \overline{x}.$$

In this way we have proved

LEMMA 4. Let hypothesis (H₁) be fulfilled. If $f^2(x) \neq x$, then inequality (2) holds.

LEMMA 5. Let hypothesis (\mathbf{H}_1) be fulfilled. If $f^2(x) \neq x$, then the sequence $f^{2n}(x)$, $n = 0, \pm 1, \pm 2, \ldots$, is monotonic and either

$$\lim_{n\to\infty}f^{2n}(x)=\overline{x} \quad and \quad \lim_{n\to\infty}f^{-2n}(x)=\underline{x}$$

or

$$\lim_{n\to\infty} f^{2n}(x) = \underline{x} \quad and \quad \lim_{n\to\infty} f^{-2n}(x) = \overline{x}.$$

This lemma is a simple corollary of Theorem 0.4 in [1].

It is easy to see that Lemmas 1, 4 and 5 imply

LEMMA 6. Let hypotheses (\mathbf{H}_1) and (\mathbf{H}_2) be fulfilled. If φ is a monotonic solutions of (1), then for every $x \in [a, b]$ such that $f^2(x) \neq x$ the function φ is constant on the interval (x, \overline{x}) .

If hypothesis (\mathbf{H}_1) is fulfilled, then there exists a point $\xi \in (a, b)$ such that

$$f(\xi) = \xi$$
.

Then

$$f([a, \xi]) \subset [\xi, b]$$
 and $f([\xi, b]) \subset [a, \xi]$.

If φ is a solution of (1), we have

$$g(\eta) = \eta$$

for $\eta = \varphi(\xi)$.

DEFINITION 2. Ψ is the class of real-valued monotonic functions ψ on $[a, \xi]$ such that

$$g[\psi(\xi)] = \psi(\xi),$$

where $f(\xi) = \xi$, and ψ is constant on (x, \bar{x}) whenever $x < \bar{x}$.

THEOREM 1. Suppose that hypotheses (\mathbf{H}_1) and (\mathbf{H}_2) are fulfilled. Then the formula

(3)
$$\varphi(x) = \begin{cases} \varphi(x) & \text{for } x \in [a, \xi], \\ g(\psi[f(x)]) & \text{for } x \in [\xi, b], \end{cases}$$

where ψ is an arbitrary function from the class Ψ , determine the general monotonic solution of (1) on [a, b].

Proof. Suppose that $\psi \in \Psi$ is decreasing. The function $\varphi(x) = g(\psi[f(x)])$ is a superposition of three decreasing functions; therefore φ is decreasing on $[\xi, b]$. But ψ is decreasing and $\psi(\xi) = g(\psi[f(\xi)])$; hence φ is decreasing on [a, b].

Let $x \in [a, \xi]$; then $f(x) \in [\xi, b]$. According to formula (3) we have

(4)
$$\varphi(x) = \psi(x) \quad \text{and} \quad \varphi[f(x)] = g(\psi[f^2(x)]).$$

If $f^2(x) = x$, then by (4) we obtain (1). If $f^2(x) \neq x$, then we have

$$\psi[f^2(x)] = \psi(x)$$

because $\psi \in \Psi$. Formulas (4) and (5) imply (1).

Let $x \in [\xi, b]$; then $f(x) \in [a, \xi]$. According to formula (3) we have

(6)
$$\varphi(x) = g(\psi[f(x)])$$

and

(7)
$$\varphi[f(x)] = \psi[f(x)].$$

From (6) and (7) follows (1). This completes the proof of the theorem when ψ is decreasing.

On the other hand, if the function φ is a decreasing solution of (1), then

$$\psi = \varphi|_{[a,\,\xi]}$$

is decreasing,

$$\psi(\xi) = g[\psi(\xi)]$$

and, according to Lemma 6, ψ is constant on $(\underline{x}, \overline{x})$ if $f^2(x) \neq x$. Therefore ψ belong to Ψ .

Let $x \in [\xi, b]$; then $f^2(x) \in [\xi, b]$ and $f(x) \in [a, \xi]$. From (1) we obtain

$$\varphi[f^{2}(x)] = g(\varphi[f(x)]) = g(\psi[f(x)]).$$

According to Lemma 1 we have

$$\varphi(x) = \varphi[f^2(x)] = g(\psi[f(x)]).$$

Hence formula (3) holds. This prove that formula (3) defines the general decreasing solution of (1) on [a, b].

For increasing solutions of (1) the proof is similar.

Similarly as Theorem 1 we can prove the following

THEOREM 2. Suppose that hypotheses (H_1) and (H_2) are fulfilled and f is an involutory function. Then formula (3), where ψ is an arbitrary invertible function from the class Ψ , determine the general strictly monotonic solution of (1) on [a, b].

LEMMA 7. Let hypotheses (\mathbf{H}_1) and (\mathbf{H}_2) be fulfilled. If φ is a continuous solution of (1), then for every $x \in [a, b]$ such that $f^2(x) \neq x$ the function φ is constant on $[x, \overline{x}]$.

Proof. Let $x < \bar{x}$; then according to Lemmas 1 and 4 we have

(8)
$$\varphi(x) = \varphi[f^{2n}(x)] = \varphi[f^{-2n}(x)].$$

The continuity of φ , formula (8) and Lemma 5 imply

$$\varphi(x) = \varphi(\bar{x}) = \varphi(x).$$

COROLLARY. Suppose that hypotheses $(\mathbf{H_1})$ and $(\mathbf{H_2})$ are fulfilled and the set

$$A = \{x \in [a, b] : f^2(x) = x\}$$

has a finite derived set A^d . If φ is a continuous solution of (1), then φ is constant.

Proof. We denote by B the set

$$\{x \in [a, b]: f^2(x) \neq x\}.$$

The set A has a finite derived set; therefore the set B is non-empty. Let φ be a continuous solution of (1) in [a, b]. The set B is open; therefore according to Lemma 7 there exists an interval (c, d) such that φ is constant on (c, d). The function φ is constant on the closed interval [c, d], because φ is a continuous function.

We suppose that d < b. If $e = \min\{x \in A : x > d\}$ exists, then according to Lemma 7 the function φ is constant on [d, e]; therefore φ is constant on [e, e].

If e does not exist, then there exists a positive number δ such that the set $(d, d + \delta) \cap A^d$ is empty, because the set A^d is finite. It is easy to prove that there exists a decreasing sequence $\{d_n\}$ such that

$$A\cap(d,d+\delta)=\{d_1,d_2,\ldots\}$$

and

$$\lim_{n\to\infty}d_n=d.$$

According to Lemma 7 the function φ is constant on the intervals $[d_2, d_1]$, $[d_3, d_2]$, ... Hence φ is constant on $[d, d_1]$. The function φ is constant on $[c, d_1]$. This proves that if d < b there exists a $d_1 > d$ such that φ is constant on $[c, d_1]$; therefore φ is constant on $[c, d_1]$; therefore φ is constant on [c, b]. The proof of the face that φ is constant on [a, c] is similar.

DEFINITION 3. Ψ_c is the class of real-valued continuous functions ψ on $[a, \xi]$ such that

$$g[\psi(\xi)] = \psi(\xi),$$

where $f(\xi) = \xi$, and ψ is constant on $[x, \bar{x}]$ whenever $x < \bar{x}$.

THEOREM 3. Suppose that hypotheses (H_1) and (H_2) are fulfilled. Then formula (3), where ψ is an arbitrary function from the class Ψ_c , determine the general continuous solutions of (1) on [a, b].

The proof of this theorem is similar to the proof of Theorem 1.

References

- [1] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne 46, Warszawa 1968.
- [2] A. Smajdor, On monotonic solutions of some functional equations, Rozprawy Matematyczne 82 (1971).

Reçu par la Rédaction le 14. 7. 1972