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A compactum is a compact Hausdorff space and a continuum is
a connected compactum. An ordered compactum (ordered continuum) is
a compactum (continuum) K provided with a total ordering < such that
the topology of K is the order topology induced on K by <. If K is an
ordered compactum with order <, and & and b are elements of K with
a < b, then [a, b], [a, d), (&, b], and (&, b) will have the usual meanings.
Any Hausdorff space which is a continuous image of an ordered compactum
(ordered continuum) will be called an IOK (I0C). A space X i8 paraseparable
(Suslinian) if each ecollection of disjoint non-empty open sets (non-
degenerate continua) in X is countable. In this paper* we will establish
a characterization of paraseparable connected IOK’s which contain no non-
degenerate metric subcontinuum. We will also establish some properties
of hereditarily locally connected continua that are obtainable as
continuous images of ordered compacta.

If § is a net whose domain is the directed set D, then we will use the
notation {S,, a € D} for §. When dealing with sequences, N will always
denote the set of natural numbers. Let X be a continuum and let K,
be a non-degenerate subcontinuum of X. K, is called a continuum of con-
vergence if there exists a net K = {K,, a € D} of subcontinua of X con-
verging to K, such that for all a and g in D either K, = Kzor K,nK; =@
and K,nK, =@. If X is a space and A < B < X, then we will use the
notation 0B to denote the boundary of B in X, and the notation dg4 to
denote the boundary of A in the subspace B. For the proofs of the first
three theorems see [8].

THEOREM 1. If X i8 a compactum and K = {K,, a € D} i3 a conver-
gent met of closed subsets of X such that lim K ¢s mon-degenerate and such
that for all a and B in D either K, = Kzor K,NK; = @ and K,Nlim K = @,

* This work is a part of the author’s doctoral dissertation under the direction
of Professor B. J. Pearson.
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then there ewist a sequence {K,,n € N} of elements of {K,, a € D} and open
sets U and V such that UnV = @, limsup K,, is non-degenerate, K,NK; = @
for all ¢ # j, and

K,nlimsupK, =3, EKnNU #0Q and KNV %G for all .

THEOREM 2. If X 18 a compactum, A and B are disjoint closed subsets
of X, and {K,,n € D} i8 a net of closed subsets of X such that K,NA +# &
and K,NB # @ for all n in D, then there ewists & subnet K' = {K, , a € B}
of K such that liminf K’ # @ and limsup K’ i8 non-degenerate.

THEOREM 3. The continuum X is hereditarily locally connected if and
only if it containg no continuum of convergence.

Marde&ié ([2], Corollary 1, p. 425) has shown that if X is a connected
IOK and X contains no non-degenerate metric subcontinuum, then dim X
= Ind X = ind X = 1. The next theorem further delineates the structure
of such continua.

THEOREM 4. If X ¢8 a connected IOK and X oontaing mo non-
degenerate metric subcontinuum, then X 48 hereditarily locally connected.

Proof. Suppose that X is not hereditarily locally connected. By
Theorem 3, X contains & continuum of convergence K,. Let K = {K,, a € D}
be a net of subcontinua of X converging to K,. By Theorems 1
and 2, there exists a sequence {K,, n € N} of disjoint elements of {K,,
a € D} such that K;Nnlimsup K, = @ for every ¢ and limsup K, contains
a non-degenerate continuum H.

Let

A = limsupK,V|J K,.
n

Since {K,,, n € N} is a sequence of disjoint closed sets, we have

A =CUK,
[ ]

and, therefore, A is a closed set. Thus, 4 is an IOK.
Let

U = UK,

Then, clearly, U is an F,. Furthermore, A — U = limsup K, since
each K, is disjoint from limsup K. Thus, U is an open F, in A. Since A
is an IOK, 0, U is separable (see [2], Theorem 2, p. 426). However,

9,U=0C,0—-U=0~U=A4—|JEK, = limsupk,.

n
Hence limsup K, is separable. Now, limsup K, is a closed subset of X,
go that limsup K, is an IOK. Since H is a closed subset of limsup K,
and limsup K, is a separable IOK, H is a separable IOK (see [5], Theorem 12,



IMAGES OF ORDERED COMPACTA 79

p. 19). However, every separable connected IOK is second countable
(see [9], Theorem 1, p. 417), and hence every separable connected IOK
is metrizable. Therefore, H is a non-degenerate metric subcontinuum of X.

THEOREM b. If X i8 & paraseparable connected IOK and K is a subcon-
tinuum of X with empty interior, then K ts metrizable.

Proof. Let U = X—K. Then U is an open set. Since X is para-
separable, U is an F, (see [6], Corollary 3, p. 13). Thus, U is separable
(see [2], Corollary 2, p. 427). Now, Int K =@ and K = X — U, so that
U = X. Hence, 0U = K and, therefore, K is separable. However, K is
a closed subset of X, and hence K is a separable connected IOK. It follows
that K is metrizable (see [9], Theorem 1, p. 417).

Let X be a connected Hausdorff space and let p e X. A space X
is said to be netlike at p (rational at p) if for each g in X —{p} there exists
a finite set (countable closed set) which separates p and ¢. A space X
i8 netlike (rational) if it is netlike (rational) at each of its points. Pearson ([7],
Theorem 7, p. 48) and Ward, Jr. ([10], p. 183), have shown independently
that every netlike continuum is an IOO. By combining this result with
the theorems above, it is possible to establish the characterization
mentioned at the beginning of this paper.

THEOREM 6. Let X be a paraseparable continuum coniaining no non-
degenerate metric subcontinuum. Then X is netlike if and only if X is an IOK.

Proof. If X is netlike, then it follows immediately from the remarks
above that X is an IOK. Suppose that X is an IOK but that X is not
netlike. It follows from [12], p. 98, that X contains a non-degenerate
continuum K such that if # € K, then X is not netlike at ». Now, by The-
orem 4, X is hereditarily locally connected, and hence K contains a non-
degenerate ordered continuum H. Since X is paraseparable, it follows
from Theorem 5 that Int H # @. Let p e Int H be such that p is not an
end point of H. We claim that X is netlike at p. To see this, let ¢ € X — {p}.
Clearly, there exist two points a and b of H such that a < p < b and
(a, b) = IntH — {q}. It follows that {a, b} separates p from ¢ in X, so that X
is netlike at p, which contradicts the fact that p € K. Therefore, X is netlike.

We now proceed to establish some properties of connected hereditarily
locally connected IOK’s. Let X be a space, and let F be a family of
subsets of X. F' is called a G-null family if for each two open sets U and V
in X with UnV = @ not more than a finite number of elements of F
meet both U and V. If {F,, a € A} is a family of disjoint subsets of X,
then {F,, a € A} is said to have property D if

F,ACLU{FyyB #0a} =0

for all @ in A. Finally, if X is a metric space and F' is & family of subsets
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of X, then F is called a null family if for every ¢ > 0 not more than a finite
number of elements of F have diameter greater than ¢. If X is a compact
metric space and F is a family of subsets of X, then it follows immediately
that F is a @G-null family if and only if it is a null family. The next theorem
is proved in [8].

THEOREM 7. If X 48 a continuum, then the following statements are
equivalent:

(1) X t8 hereditarily locally connected.

(2) Every family of disjoint continua tn X with property D is a G-null
Jamaly.

(3) The components of every closed subset of X form a G-null family.

THEOREM 8. Let X be a connected hereditarily locally connected I0K.
Then X is metrizable if and only if X is Suslinian and each arc in X i3

separable.

Proof. We assume that X is non-degenerate. First, suppose that X
is Suslinian and that each arc in X is separable. It follows from Zorn’s
Lemma that there exists a maximal collection M of disjoint ares in X.
Since X is Suslinian, it is clear that M is countable. Let M = {M,, i € N}.

Now, each element of M is an arc, and hence each element of M
is separable. For each i, let D, be a countable dense subset of M,, and let

.D = UD‘.
i

D is clearly countable. We claim that D is dense in X. For, suppose
that there exists an open set U such that UnD = @. Since UnM; is M;-
open, we must have UNM; = @ for each ¢. Let € U. Since X is locally
connected, there exists a connected open set V such that eV < U.
Let ye V be such that # #y and let K be a continuum such that
2,y € K = V. Let H be an irreducible continuum in K from « to y. Then H
is locally connected, and hence H is an are. Since H = U, we have HNM;,
= O for each 4. Thus, MU {H} is a collection of disjoint arcs in X properly
containing M, which contradicts the maximality of M. It follows that .D
is dense in X, so that X is separable. Therefore, X is metrizable (see [9],
Theorem 1, p. 417).

Next, suppose that X is metrizable. Since X is compact, it is clear
that each arc in X is separable. Let d be a metric on X which induces
the topology of X, and for each A = X let §(A) denote the diameter of A
with respect to d. Suppose that X is not Suslinian. Since X is hereditarily
locally connected, there exists an uncountable collection G of disjoint
arcs in X, If H € @, then §(H) > 0, since arcs always are non-degenerate.
Hence there exist an ¢ > 0 and an uncountable subset S of G such that,
for each H in 8, 8(H) > ¢. Let H, € 8. Now, since X is a metric space, X
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has a countable base at H,. It follows that there is an open set B, contain-
ing H, such that uncountably many elements of S fail to meet B,. Let H,
denote such an element of 8. Since X also has a countable base at H,,
there is an open set B, containing H, such that uncountably many elements
of § fail to meet B,UB,. Let H; denote such an element. Continuing in
this manner, we obtain a sequence {H,,n € N} of disjoint elements of §
and a sequence {B,, n € N} of open sets such that, for each »,

n
H,c<B, and H,,n|JB,=9.
i=1
Let H, = @ and, for each n > 0, let
n—1
W” = .Bn— UH{.

$=0
Then {W,,n € N} is a sequence of open sets such that, for each =,
H, c W, and H,NnW,, =@ for n # m. Thus, for each n,

ClU{H,,m #n} c X-W, < X—H,,

so that {H,, n € N} is a collection of disjoint continua in X with property D.
Algo, each H, e 8 and, therefore, 8(H,) > ¢, and hence {H,,n e N} is
not a null family. Since X is a compact metric space, {H,,n € N} is not
a @-null family and, therefore, X is not hereditarily locally connected.
We conclude that X is Suslinian.

It is well known that if X is a non-degenerate hereditarily locally
connected metric continuum, then dimX = IndX = indX = 1. The
next theorem gives an upper limit for ind X when X is a connected he-
reditarily locally connected IOK.

THEOREM 9. If X 48 a conmected hereditarily locally connected IOK,
then ind X < 3.

Proof. Let # € X, and let U be an open set containing #. Every IOK
is locally peripherally metrizable (éee [4], Theorem 5, p. 566) and,
therefore, there exists an open set V such that z eV, ¥V = U, and 9V is
metrizable. We claim that indoV < 2.

Let # denote the set of all non-degenerate components of V. Now, dV
is a closed subset of X, and so, by Theorem 7, the components of 0V form
a G-null family. Thus, # is a G-null family. Consider now # as a collec-
tion of continua in the subspace dV. Since 0V is a closed subset of X,
Z is a G-null family in the subspace 0V. However, 0V is metrizable, and
hence # is a null family in 9V. It follows that & is countable. Now, each
element of & is a hereditarily locally connected metric continuum. Thus,
if Ke#, then IndK = 1.

Let F = | J# and E = 0V —F. Now, F is a metric space. Since &
is a countable covering of F with closed sets each with Ind < 1, it follows
from the Sum Theorem (see [6], Theorem II.1, p. 17) that Ind F' < 1.

6 — Colloquium Mathematicum XL.1



82 J. N. SIMONE

Next, consider E. We claim that Ind E < 0. First of all we will show
that ind < 0. Let ¥y € E and let W* be an E-open set such that y e W*.
There exists a dV-open set W such that W* = WNE. Now, since y € K,
{y} is a component of dV. Thus, there exists a 0V-open set B such that
yeB = W and 0,,B = @. Let B* = BNE. Then B* is an E-open set
and y € B* = W*. Furthermore, 0;B* = 8,,B = @, and hence ind ¥ < 0.
Now, 0V is a compact metric space and, therefore, every subset of 9V is
separable. Thus, ¥ is a separable metric space. However, on any separable
metric space, dim, ind and Ind all agree (see [6], Theorem IV.1, p. 90)
and, therefore, Ind F < 0.

Thus, 0V = EUF, IndE <0, and IndF < 1. It follows from the
Decomposition Theorem (see [6], Theorem II.4, p. 19) that InddV < 2.
Since inddV < IndoV < 2, we conclude that ind X < 3.

THEOREM 10. Every Suslinian continuum i8 paraseparable.

Proof. Let X be a continuum, and suppose that X is not parasepar-
able. Let {U,, a € A} be an uncountable collection of disjoint non-empty
open subsets of X. For each a in A4, let V, be an open set such that 7V, < U,,
and let K, be a component of V,. Then K, is a continuum. Furthermore, K,
meets 0V, for each a in A. Thus, {K,, a € A} is an uncountable collection of
non-degenerate subcontinua of X. Since K, = U, for each a, {K,, a € A}
is an uncountable collection of disjoint non-degenerate subcontinua of X.
Therefore, X is not Suslinian.

Whyburn ([11], p. 381) has proved that every hereditarily locally
connected metric continuum is rational. It is an open question whether
the same theorem holds for non-metric hereditarily locally connected
continua. Our final theorem gives an interesting decomposition into ra-
tional continua for a certain class of hereditarily locally connected
continua.

THEOREM 11. Every Suslinian connected hereditarily locally connected
IOK is the union of a totally disconnected set and a countadble collection of
rational continua.

Proof. Suppose that X is not rational. Let R be the set of all points
of X at which X is rational. If # € X — R, then there exists a non-degen-
erate continuum K containing @ such that X is rational at no point of K,
(see [12], p. 98). Clearly, X—R = |J{K,,# ¢ R}. Let A = X—R.
Consider 4. The continuum X is Suslinian, and 4 is a compact subset of X,
and hence 4 has only countably many non-degenerate components.
Let {K,,¢ € N'}, where N' = N, be the set of non-degenerate components
of 4. BEach K, is a Suslinian connected hereditarily locally connected IOK.
Let ¢ € N', and suppose that H is an ordered continuum in K, such that
Int H # @. Since H = A, there exists a point p in Int HNnA. We claim
that X is rational at p. Let ¢ € X — {p}. There exist points @ and b in H
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such that ¢ < b, p € (&, d), q ¢ (a, d), and (a, d) is open. It follows that
{a, b} separates p and ¢ in X so that X is rational at p, which contradicts
the fact that p € A. Thus, Int H = @ for every arc H in K;. By Theorem 10,
K, is paraseparable and, therefore, by Theorem 5, each arc in K, is
metrizable. Thus, it follows from Theorem 8 that each K; is a hereditarily
locally connected metric continuum, and hence that each K; is a rational
continuum. Let
FP=\UK, and E=A4-F.
i

Clearly, E is totally disconnected, and hence 4 is the union of a total-
ly disconnected set and a countable collection of rational continua.

Let V = X —A4. Now, V is an open set and X is a paraseparable IOK.
Thus, V is an F, (see [6], Corollary 3, p. 13), i.e.,

V = L‘JF"

where each F, is a closed set. Let ¢ € N. For each #in F'; there exists a con-
nected open set U: such that € U and U, < V. Now, since {U., v e F,;}

covers F; and F; is compact, there exists a finite subset {U, ..., U3}
of {U.,zeF;} such that

n n ____
F, sleUf,j and HU}, cV.
Let E; = —U_;,; for all ¢ and j. Then each E; is a non-degenerate con-
tinuum and, clearly,

JE, = 7.
1,7

Now, X is rational at each point of Vsince V <« R.FromE; <« V = R
it follows that each H; is a rational continuum. Since

X = EU U.K‘U UE“,
i 1,7

the theorem follows.
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