A. IDZIK (Warszawa)

CHARACTERIZATIONS OF m-CONNECTED GRAPHS

Abstract. A generalization of Frank's conjecture [2] as well as its short proof are given in this paper. A counterexample to Györi's conjecture formulated in his paper [4] on p. 272 is also presented.

- 1. Introduction. The Menger theorem (see [1], p. 167) is one of the most well-known characterizations of m-connected graphs. A few years ago, Györi [3], [5] and Lovász [6] independently solved Frank's conjecture [2] (its weaker version was formulated also by Maurer [7]) and gave a very interesting characterization of m-connectivity. Some conditions for a graph to be m-connected have been found by Györi in [4], where he formulated a related conjecture. In the last section of our paper, we give a counterexample to his conjecture.
- **2.** A generalization of Frank's conjecture. By a graph we mean a finite undirected graph without loops and multiple edges. If G is a graph, then V(G) and E(G) denote the vertex-set and the edge-set of G, respectively. For $W \subset V(G)$, G(W) denotes the subgraph of G induced by G. A graph G is m-connected if $|V(G)| > m \ge 1$ and, for every $|W| \subset V(G)$, $|G| \subset W = m-1$, the graph $|G| \subset W \subset W$ is connected (G is 1-connected if it is connected).

Equivalently, a graph G is m-connected $(m \ge 1)$ if and only if from every subset of vertices $W \subset V$ such that $|V \setminus W| \ge m$ there exist in G edges leading to at least m vertices of $V \setminus W$.

We can prove the following theorem:

Theorem 1. A graph G with n vertices is m-connected if and only if for k different vertices $v_i \in V(G)$ $(i=1,\ldots,k;\ k \leq m)$, m positive integers n_i $(1 \leq n_i \leq n-k+1;\ i=1,\ldots,m)$ such that

$$\sum_{i=1}^{m} n_i \geqslant n + m - k$$

and for $v_j \in \{v_1, ..., v_k\} = V_0$ (j = k+1, ..., m) there exist subsets $V_i \subset V(G)$ (i = 1, ..., m) such that

$$\bigcup_{i=1}^m V_i = V(G), \quad v_i \in V_i, \ |V_i| = n_i, \ v_i \neq v_j$$

imply

$$v_i \notin V_j$$
,

and the graph $G(V_i)$ is connected for i, j = 1, ..., m.

Remark 1. It is sufficient to prove Theorem 1 for the case

$$\sum_{i=1}^{m} n_i = n + m - k$$

only, because any subset of V(G) containing only one vertex from the set V_0 and inducing a connected subgraph can be extended to a subset of V(G) which contains only this vertex from the set V_0 and induces a connected subgraph with an arbitrary number of vertices less than n-k+2. Also, we may restrict ourselves to the case k=m. This follows from the fact that from every vertex $v_i \in V_0$ there are edges leading to at least m different elements of $V(G) \setminus \{v_i\}$, $i=1,\ldots,k$. For V_0 and $j=k+1,\ldots,m$ we may choose, step by step, m different vertices

$$V'_0 = \{v_1, \ldots, v_k, v'_{k+1}, \ldots, v'_m\}$$

in a way such that for $j \in \{k+1, ..., m\}$ if $v_j = v_i$ for some $i \in \{1, ..., k\}$, then $(v_j, v_j') \in E(G)$. We apply Theorem 1 to V_0' and $\{n_1, ..., n_k, n_{k+1} - 1, ..., n_m - 1\}$ (assuming $n_j > 1$ for $j \in \{k+1, ..., m\}$) and join chosen vertices by edges (v_j, v_j') , respectively, to receive the connected graphs induced by the sets V_i (j = k+1, ..., m).

For the case k = m Theorem 1 becomes Corollary 2.

DEFINITION 1. Let v_i (i = 1, ..., m) be m different vertices of a graph G with |V(G)| = n > m, and n_i (i = 1, ..., m) be positive integers with

$$\sum_{i=1}^m n_i = n.$$

We recall (see [4]) that G satisfies the partition condition

$$P_m(G; v_1, ..., v_m; n_1, ..., n_m)$$

if there is a partition $\{V_1, \ldots, V_m\}$ of V(G) such that $v_i \in V_i$, $|V_i| = n_i$, and the graph $G(V_i)$ is connected for $i = 1, \ldots, m$.

A graph G is said to satisfy the partition condition

$$P_m(G; n_1, \ldots, n_m)$$

if G satisfies the partition condition $P_m(G; v_1, ..., v_m; n_1, ..., n_m)$ for every choice of $\{v_1, ..., v_m\} \subset V(G)$.

Let us observe that

PROPOSITION 1. A graph G, |V(G)| = n, is m-connected if and only if $\frac{it}{t}$ satisfies the partition condition

$$P_m(G; n-m+1, \underbrace{1, ..., 1}_{m-1}).$$

To prove Theorem 1 it is sufficient to show that, for $n_i \ge 1$, i = 1, ..., m, and $\sum_{i=1}^{m} n_i = n$,

$$P_m(G; n-m+1, \underbrace{1, \ldots, 1}_{m-1})$$
 implies $P_m(G; n_1, \ldots, n_m)$

or, more generally, we have

THEOREM 2. Let G = (V, E) be an m-connected graph, $\{v_1, \ldots, v_m\} \subset V$, $\{V_1, \ldots, V_m\}$ be a partition of V(G), $v_i \in V_i$, and $G(V_i)$ be connected for $i = 1, \ldots, m$. If $|V_1| > 1$, then there exists a partition $\{V_1', \ldots, V_m'\}$ of V(G) such that $|V_1'| = |V_1| - 1$, $|V_i'| = |V_i|$ for $i = 2, \ldots, m-1$, $V_m \subset V_m'$, $v_i \in V_i'$, and the graph $G(V_i')$ is connected for $i = 1, \ldots, m$.

Proof. Without loss of generality we may assume that $(v_i, v_j) \in E(G)$ for $i \neq j$ and i, j = 1, ..., m. For every $i \in \{1, ..., m-1\}$, we choose any $c_i \in V_i$ such that there exists $d_i \in V_m$, $(c_i, d_i) \in E(G)$, and the number of vertices in $G(V_i \setminus \{c_i\})$ which do not belong to the component containing v_i (we denote these vertices by W_i) is minimal. It may happen that $c_i = v_i$ or $W_i = \emptyset$. Let us put

$$W = \bigcup_{i=1}^{m-1} W_i$$

and assume |W| = k. For $W = \emptyset$, Theorem 2 is obvious. Let us assume that our theorem is true for all m'-connected graphs with |W| < k and $m' \le m$.

Case 1. First, we consider the case $c_1 \neq v_1$. If $W_1 = \emptyset$, then we join c_1 to W_m and we have done. If $W_1 \neq \emptyset$, then we put

$$\bar{v}_i = c_i, \quad \bar{V}_i = W_i \cup \{c_i\} \quad \text{for } i = 1, \dots, m-1,$$

$$\bar{v}_m = v_m, \quad \bar{V}_m = V_m \cup \bigcup_{i=1}^{m-1} \{V_i \setminus (W_i \cup \{c_i\})\}$$

and apply the induction hypothesis to graphs $G(\bar{V}_i)$ for $i=1,\ldots,m$. ($\bar{W}\subset W$ and $\{c_1,\ldots,c_{m-1}\}$ do not disconnect G, thus $|\bar{W}|<|W|=k$.) There exist

$$v \in \overline{W}$$
, $j \in \{1, \ldots, m-1\}$, $w_j \in V_j \setminus (W_j \cup \{c_j\})$

such that $(v, w_j) \in E(G)$, and a partition $\{\overline{V}_1', \ldots, \overline{V}_{m-1}'\}$ of the set

$$\left\{\bigcup_{i=1}^{m-1} (W_i \cup \{c_i\})\right\} \setminus \{v\}$$

such that $|\bar{V}_i'| = |W_1|$, $|\bar{V}_i'| = |W_i| + 1$ for $i = 2, ..., m-1, c_i \in \bar{V}_i'$, and the graph $G(\bar{V}_i')$ is connected for i = 1, ..., m-1. The new graphs $G(\bar{V}_i)$, where

$$\begin{split} \tilde{V}_j &= \{v\} \cup \bar{V}_j' \cup \big\{V_j \setminus (W_j \cup \{c_j\})\big\}, \quad \tilde{V}_m = V_m, \\ \tilde{V}_i &= \bar{V}_i' \cup \big\{V_i \setminus (W_i \cup \{c_i\})\big\}, \quad \text{for } i = 1, ..., m-1 \text{ and } i \neq j, \end{split}$$

are connected for $i=1,\ldots,m$. If j=1, then $|\tilde{V}_i|=|V_i|$ for $i=1,\ldots,m-1$, and if $j\neq 1$, then $|\tilde{V}_1|=|V_1|-1$, $|\tilde{V}_j|=|V_j|+1$, $|\tilde{V}_i|=|V_i|$ for $i=2,\ldots,m-1$ and $i\neq j$. Furthermore, $|\tilde{W}|\leqslant |W|-1$ and we can apply the induction hypothesis once more to $\{\tilde{v}_1,\ldots,\tilde{v}_m\}$ and the partition $\{\tilde{V}_1',\ldots,\tilde{V}_m'\}$, where $\tilde{v}_1=v_j,\ \tilde{V}_1'=\tilde{V}_j,\ \tilde{v}_j=v_1,\ \tilde{V}_j'=\tilde{V}_1,\ \tilde{v}_i=v_i,\ \tilde{V}_i'=\tilde{V}_i$ for $i=1,\ldots,m$ and $1\neq i\neq j$, to complete the proof.

Case 2. If $c_1 = v_1$, then $V_0 = \{v_1, \ldots, v_{m-1}\}$ does not disconnect G and there is a sequence of different integers r_i , $1 \le r_i \le m$, $r_1 = 1$, $r_k = m$, $k \in \{3, \ldots, m\}$, and vertices $\{a_{r_i}, b_{r_i}\} \in V_{r_i} \setminus \{v_{r_i}\}$ (not necessarily different), $b_m \in V_m$, such that

$$(a_{r_i}, b_{r_{i+1}}) \in E(G(V(G) \setminus V_0))$$
 for $i = 1, ..., k-1$.

We begin with

$$\bar{V}_m = \bigcup_{i=2}^k V_{r_i}$$

and apply Case 1 to transfer, in a finite number of steps (less than k), a vertex from V_1 to V_m to fulfil our assertion.

Theorem 2 implies

COROLLARY 1 (Györi's theorem [3], [5]). Let G be an m-connected graph and $\{v_1, \ldots, v_m\}$ be different vertices of G. Suppose that we have a partition $\{V_1, \ldots, V_m, S\}$ of V(G) such that $S \neq \emptyset$, $v_i \in V_i$, and $G(V_i)$ is connected for $i = 1, \ldots, m$. Then there is another partition $\{V'_1, \ldots, V'_m, S'\}$ of V(G) such that $v_i \in V'_i$, $G(V'_i)$ is connected for $i = 1, \ldots, m$, and $|V'_m| = |V_m| + 1$, $|V'_j| = |V_j|$ for $i = 1, \ldots, m-1$.

Proof. If there are edges leading from S to V_m , then we can join the corresponding vertex from S to the set V_m and we have done. If not, we join the vertices of connected components of S to the vertices V_j for some $j \in \{1, \ldots, m-1\}$, and obtain a partition $\{\bar{V}_1, \ldots, \bar{V}_m\}$ of V(G) such that $V_i \subset \bar{V}_i$ for $i=1,\ldots,m-1$, $V_m=\bar{V}_m$, $|\bar{V}_j|>|V_j|$ for some $j \in \{1,\ldots,m-1\}$, and the graphs $G(\bar{V}_i)$ ($i=1,\ldots,m$) are connected. Then we apply Theorem 2 to transfer a vertex from \bar{V}_j to \bar{V}_m . By Theorem 2 we have a partition $\{V'_1,\ldots,V'_m\}$ of V(G) with the properties: $|\bar{V}'_j|=|\bar{V}_j|-1$, $|\bar{V}'_i|=|\bar{V}_i|$, $|\bar{V}''_m|=|\bar{V}_m|+1=|V_m|+1$, $v_i\in\bar{V}'_i$, and $G(\bar{V}'_i)$ is connected for $i=1,\ldots,m$. Having this, we can easily construct the desired partition of V(G).

Theorem 1 for k = m (see Remark 1) follows now from Theorem 2 (as well as from Corollary 1).

COROLLARY 2 (Frank's conjecture [2], Györi [3], [5], Lovász [6]). Let G be an m-connected graph, $\{v_1, \ldots, v_m\}$ be different vertices of G, and $\{n_1, \ldots, n_m\}$ be positive integers such that

$$\sum_{i=1}^m n_i = |V(G)|.$$

Then there is a partition $\{V_1, \ldots, V_m\}$ of V(G) such that $v_i \in V_i$, $|V_i| = n_i$, and $G(V_i)$ is connected for $i = 1, \ldots, m$.

Proof. We apply Theorem 2 starting from the partition

$$V_1 = V \setminus \{v_2, ..., v_m\}, \quad V_i = \{v_i\} \text{ for } i = 2, ..., m.$$

An example presented in the last section of the paper shows that Theorem 2 is not true for connected graphs which are not *m*-connected. This enables us to formulate the following proposition (its proof follows from Proposition 1):

PROPOSITION 2. Let G be a connected graph and |V(G)| > m. If for every choice $\{v_1, \ldots, v_m\} \subset V(G)$ of different vertices and every partition $\{V_1, \ldots, V_m\}$ of V(G) such that $v_i \in V_i$ and $G(V_i)$ is connected for $1, \ldots, m$ the assertion of Theorem 2 is fulfilled, then the graph G is m-connected.

Thus, Theorem 2 characterizes m-connected graphs.

3. A counterexample to Györi's conjecture. Now, we give an example to show that the following conjecture is not true.

Conjecture 1 (Györi [4], p. 272). Let G be a graph and |V(G)| > m. Furthermore, let $\{n_1, \ldots, n_m\}$ and $\{n'_1, \ldots, n'_m\}$ be nondecreasing sequences of Positive integers such that $n_i \leq n'_i$ for $i = 1, \ldots, m-1$ and

$$\sum_{i=1}^{m} n_{i} = \sum_{i=1}^{m} n'_{i} = |V(G)|.$$

If G satisfies the partition condition $P_m(G; n_1, ..., n_m)$, then it also satisfies the partition condition $P_m(G; n'_1, ..., n'_m)$.

Example 1. Let a graph G have vertices

$$V(G) = \{x_i, y_j, z_k | i, k \in \{1, ..., 5\}, j \in \{1, 2\}\}$$

and edges

$$E(G) = \{(x_i, y_j), (z_i, y_j), (x_i, x_k), (z_i, z_k) | i \neq k, i, k \in \{1, ..., 5\}, j \in \{1, 2\}\}.$$

This means that y_j (j = 1, 2) is adjacent to each vertex of the complete graphs induced by vertices $\{x_1, \ldots, x_5\}$ and $\{z_1, \ldots, z_5\}$, respectively (see Fig. 1, where some edges of G are drawn).

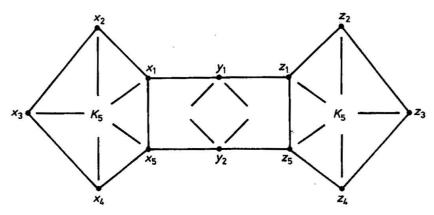


Fig. 1

The graph G is 2-connected. It satisfies the partition condition $P_3(G; 3, 4, 5)$ but does not satisfy the partition condition $P_3(G; x_1, x_2, x_3; 4, 4, 4)$.

Acknowledgements. It is a pleasure to thank S. Bylka, M. Malawski and M. M. Sysło for helpful conversations.

References

- [1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam 1976.
- [2] A. Frank, Problem session, Proc. Fifth British Combinatorial Conf., Aberdeen 1975.
- [3] E. Györi, On division of graphs to connected subgraphs, pp. 485-494 in: Combinatorics (Proc. Fifth Hungarian Combinatorial Coll., Keszthely 1976), Bolyai-North-Holland, 1978.
- [4] Partition conditions and vertex-connectivity of graphs, Combinatorica 1 (1981), pp. 263-273.
- [5] Partitions of n-connected graphs, pp. 80-85 in: Teubner-Texte zur Math., Band 59, Leipzig 1983.
- [6] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar. 30 (1977), pp. 241–251.
- [7] S. B. Maurer, Problem session, Proc. Fifth British Combinatorial Conf., Aberdeen 1975.

INSTITUTE OF COMPUTER SCIENCES POLISH ACADEMY OF SCIENCES 00-901 WARSZAWA