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Abstract differential inclusions
with some applications to partial differential ones

by GrzeGORZ BARTUZEL and ANDRzEI Fryszkowski (Warszawa)

Abstract. Let ¥, W, and Z be linear normed spaces and comsider an operator A:
dom A = W—V, a mapping j: domj < W—Z, and a multifunction F: domF < Z —cl(V). The
paper deals with the problem of existence of solutions for an abstract differential inclusion:

Find we Wsuch that Awe F(jw).

Such a generally stated problem admits a solution under suitable regularity assumptions on j, A,
and F, and the compactoess and growth conditions with the exponments «;, og, ap, where
a,azap < 1 and R is a coretraction to A. The idea of the proof is based on an existence theorem for
continuous selections.

The main result is applied to the following problems for partial differential inclusions:

(a) of elliptic type: Find u from the Sobolev space H*(T, R*) such that dueG(t, u(t), Pu(t)
a.e. in an open bounded set T< R™ and u(t)=0 on the boundary 47, where G:
T x R* x R™ - cl(R");

(b) of parabolic type: solve du/dt+ Lu = g(t) with an initial condition u(0)e F(ju), where
teT=(0,1), I=[0,a), L=—58%dx* is an operator defined on the Sobolev space
HY(T, RYnH*(T, R*) and geL'(I, L*(T, RY).

Introduction. Consider an abstract differential inclusion
(1) DueF(u),

where U and V are function spaces and D: U - V is a differential operator. In
the case when the right-hand side F(u) is a lower semicontinuous multifunction
from U into closed convex subsets of V, the existence of solutions to (1) can be
concluded from the well-known Michael Theorem [11], [13]. Namely, under
suitable growth and compactness conditions on F(u), every differential equa-
tion Du = f(u), with a continuous selection f(u) of F(u), f(u)e F(u), admits
a solution uedomF:= {ueU: F(u) # J}.

If the values F(u) are not necessarily convex, a continuous selection need
not exist. However, in some situations, the convexity assumption in the
Michael Theorem can be replaced by another one. This is the case when V is
the Lebesgue space of s-integrable functions, se[1, o), defined on a measure
space (T, &, u). If we assume that dom F is compact and all sets F(u) are
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decomposable, ie. for all v, v'e F(u) and every A%,
140+ (1—x )0 eF(u),

then the mapping F(-) admits a continuous selection. This is proved in [7] for
V = L}(T, X), where X is a Banach space (in [7] X was required to be
separable, but the proof does not actually use this condition).

In the present paper we extend this result in a simple way to an arbitrary
space [’(T, X), se[1, o) (see also [3], [4]). We give a precise formulation in
Section 2, where we also provide some necessary definitions and results, They
allow us to show the scope of the class of decomposable lower semicontinuous
multifunctions. Section 3 is devoted to the proof of our main result on the
existence of solutions to (1), which we apply in Section 4 to elliptic and
parabolic differential inclusions. Our theorem generalizes the existence results
to a wide range of differential inclusions such as partial differential inclusions
[1] and a new nonstationary diffusion problem. In this case a qualitatively new
phenomenon appears: we may consider a constraint on the initial conditions
which depends on the future values of the trajectory.

2. Preliminaries. Let W and Z be topological spaces and let cl(Z) stand for
the class of all nonempty closed subsets of Z. By a multifunction (multivalued
mapping or simply mapping) we mean a mapping F: W —cl(2).

DEFINITION 1. A mapping F: W — cl(Z) is called lower semicontinuous (l.5.c.)
if for any closed B = Z the set

(2) F*(B)={weW: F(w) < B}
is closed in W.

Remark 1. If Z is a metric space with metric d, then F being ls.c. is
equivalent to the upper semicontinuity (us.c) of the function
(w, z)— dist(z, F(w)). =

Since now let T be a locally compact Hausdorff topological space with
a o-field & given by a nonnegative ¢-finite regular Borel measure u. For an
arbitrary Banach space X with norm |-| we shall denote by .# (T, X) the space
(of equivalence classes) of #-measurable functions from T into X and by
L(T, X) the subspace of #(T, X) equipped with the norm

) I2har = {[ 12O )}, sell, e)

Let Z be a normed space contained in (T, X).

DEFINITION 2. (i) A set K < Z is decomposable if for all z, z' e K and every
Ae ¥

4 2az+(—x)z €K (in A(T, X)).
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(i) A mapping F: W —cl(Z) is decomposable if for every w e W the set F(w)
is decomposable.

Consider a continuous mapping f: X — X and denote by T;: Z— # (T, X)
the mapping given by

() (T 2)(8) = f (2(2).
Such a T, can be a source of new decomposable mappings:

PROPOSITION 1. Let Z and Z, be normed spaces in A (T, X) and let W and
W, be topological spaces. Assume that the mapping T, given by (5) is
a homeomorphism between Z and Z,. Let F,: W, —cl(Z,) be decomposable and
Ls.c, and J: W — W, a continuous mapping. Then F = T; 'oF 0J: W —>cl(Z) is
also decomposable and ls.c. where Ty ': cl(Z,)—cl(Z) is induced by T, ':
Z,~Z.

Proof That F is ls.c. is obvious. To prove that F is decomposable,
fix Ae ¥ and we W. For z,, z,e F(w) set z = 3,2, +(1 — x,)z,. One can check
that Tz = x,Tpz; +(1—x,) T,z,. But T, z,e F (Jw) for i =1, 2 and thus T,z
ex Fi(Uw)+(1—x,)F,(Jw) = F (Jw), by decomposability of F,. Therefore
ze(T; *oF,oJ)(w) = F(w), which completes the proof. =

COROLLARY 1. For any p, se[1, o), the classes of all decomposable Ls.c.
mappings from W into cl(L*(T, X)) and cl(L*(T, X)) respectively are in a bijective
correspondence.

Proof Let f,,; X=X be the function given by

x[¥P~1x if x #0,

Jup¥) = {0 if x =0,

Consider the mapping T; , given l.)y (5) with f = f; ,. Then T; , is the famous
Mazur homeomorphism ([2], Ch. IV) between L*(T, X) and I*(T, X) and now
our claim follows from Proposition 1. =

Consider a space ¥V < #(T, X). We shall say that V has the continuous
selection property iff for any compact topological space W, every ls.c.
decomposable mapping F: W —cl(V) admits a continuous selection f(-),
f(w)e F(w) for all we W. First the continuous selection property for the spaces
L}(T, X) has been shown in [7] with T compact and X separable and next
extended in [3] to the general case (for W a separable space). The same remains
true also for I’(T, X), where se[1, oo):

PROPOSITION 2. Assume that W is a compact topological space and let F:
W—*cl(L‘(T, X)) be lsc. and decomposable. Then F admits a continuous
selection.

Proof Let T;, denote the Mazur homeomorphism from L*(T, X) onto
L(T, X). From Proposition 1 it follows that F, =(T;,) 'oF is ls.c. and
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decomposable as well. Therefore F, admits a continuous selection f;. One can
check that f = T, ;of, is the required selection of F. w

Needless to say, the family of l.s.c. decomposable mappings is very wide.
Now we are going to present a class of such mappings; first, we recall the
notion of measurability of multivalued mappings.

Let (S, &) be an arbitrary measure space and Y a separable metric space.

DEFINITION 3. A mapping G: S—cl(Y) is called &-measurable (or simply
measurable) if G*(B)e ¥ for every Becl(Y).

Now we present a class of 1.s.c. decomposable mappings which appears in
the theory of differential inclusions. Let X and Y be two finite-dimensional
Banach spaces and consider a mapping G: Tx X —cl(Y) satisfying the
following conditions:

(i) G is & @ #-measurable, where # stands for the Borel o-field of X,

(i) G(¢t, ') is ls.c. for every teT,

(iil) G satisfies the following growth condition: there exist y > 0, ¢ > 0 and
me (T, R) such that for each teT and xeX

sup{Jr|: reG(t, x)} < m(t)+e(1+|x])’, se[l, o).
For such G and we (T, X) we define a new multifunction by
(6) F(w)={ze #(T, Y): z(t)eG(t, w(t)) ae. in T}.

If ye(0, p/s] then F(w) is a nonempty closed subset of L'(T, Y). Moreover, we
have the following

PROPOSITION 3. Assume that G: T x X — cl(Y) satisfies (i}-(iii) and consider
the mapping F given by (6). If ye(0,p/s] and u(T)< + oo then F:
IP(T, X) - cl(L(T, X)) is Ls.c. and decomposable and satisfies the following
growth condition: There is C > 0 such that

(0 sup{lzl,r zeFW)} < C(L+IWl,z) for every weI(T, X).

Proof. Fix we I’(T, X). One can check that the set F(w) is decomposable.
By a standard argument it is also closed. We shall prove that it is nonempty,
condition (7) holds and hence the mapping F(-) is ls.c.

(a) Nonemptiness. From (i) it follows that G(-, w(-)) is measurable, and
hence admits measurable selections, by the Kuratowski and Ryll-Nardzewski
Theorem [10], [5]. From (iii) we can conclude that every measurable selection
z(+) of G(-, w(+)) satisfies

(8) (&) < m(t)+c(L+|w(@)) ae in T

But (1+|w(-)))’e (T, R) and therefore (8) means that F(w) is a noncmpty
subset of L(T, X) and for every ze F(w)

Izlls.7 < llmls,r +cco((|1+]W] [l 5,7),
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where c, is the norm of the embedding of L”’(T, R) into L(T, R). The latter
inequality provides the required estimate with C = |m|, r+ cco(1+ pu(T)!?)
since [[ms,r < [[mllsr(1+[lwllp,7)".

(b) Ls.c. Fix Becl(IX(T, Y)) and let w, e F* (B) be a sequence converging to
wo. We shall show that w,e F*(B), ie. F(w,) < B. For every z,€F(w,) and
n=1,2,... there exist z,e F(w,) such that

|z, (£)—zo(t)| = dist(zo(t), G(t, w,(f))) ae. in T

Since {w,} converges in L’(T, X) to w,, by taking a subsequence, if necessary,
we may also assume that it converges a.e. in T. Let T, = T be a set of full
measure such that for each te T

limw,(f) = wo(t), z,(t)eF(t, w,(1)).
Then (ii) shows that for all te T,
lim sup |z,(f) — z,(t)] = limsup dist(z,(t), G(t, w,(1)))
< dist(z,(£), G(t, wo(1)) =0,

which means that z,(¢) tends to z,(t) a.e. in T. Moreover, from (8) it follows that
for any Ae.?

£ lz,(O) p(dt) < 2271 :[ Im(OF u(dt)+2°" 1 c* £ (1 +wa(8))” (@)

But since ys < p, using the Mazur homeomorphism we have
lim (14w, () 1(de) = § (1+Iwo (0))”" w(d2),
A

A
which means in particular that the functions |z,(-)|* are equiintegrable. By the
Vitali-Hahn-Saks Theorem [6], {z,} converges in I)(T,Y) to z, But
z,€F(w,) c B and B is closed, thus z, € B. Since z,€ F(w,) has been arbitrary,
we have F(w,) = B, which completes the proof. w

3. Abstract differential inclusions. Let V and W be arbitrary normed
spaces. A mapping A: dom A — V, where domA4 < W, is called a retraction on
V if A admits a “right inverse”, i.e. there exists a continuous mapping R: V - W
such that AoR = id,,. Of course we must have imR = dom A = W. The map
R is said to be a coretraction of A.

Let Z be a normed space and consider a multifunction F:
domF < Z—cl(V). We shall say that F satisfies the growth condition with
exponent oy 2> 0 iff there exists a constant Cr > 0 such that for every zedom F

9 sup {[[v]|: veF(z)} < Cr(1+|z])*r.
In particular, if F is a function then the growth condition reads
(10) 1F @I < Cpll +[|z])*".
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Assume now that Z is a Banach space and V < (T, X) has the
continuous selection property and F is a ls.c. decomposable mapping.
Consider a completely continuous mapping j: domj < W— Z. The main result
of this work is the following:

THEOREM 1. Suppose that F, j and a coretraction R of A satisfy the growth
conditions with nonnegative exponents ag, o) and o (and constants Cr, C ; and
Cp) respectively and additionally

(i) im R < domj, imj < dom F and dom F is a closed convex subset of Z;
(ii) apojap < 1.
Then the problem

11 Find we W such that Awe F (jw)

has a solution weim R < domjndom 4.

Proof. Fix r > 0 and set B, = {wedomj: |w|, <r}. Then B, # @ for
any r > ||R(0)]|y since then R(0)e B,. Let S, = coj(B,), the closed convex hull
of j(B,). Since j is completely continuous and B, is bounded, j(B,) is relatively
compact and thus S, is compact. Moreover, for each z€S§,

(12) Izl < sup {li(w)iz: weB,} < C,(1+r)".

Clearly S, c dom F and the mapping F restricted to S, is l.s.c. and decom-
posable as well. Thus F admits a continuous selection on S,. The growth
condition yields that for every such selection f: S,—V and for each z€S§,

(13) Lf @y < Cpl+ 2] 2)*.

The last inequality together with (12) implies that there exists a constant C,
such that for each zeS§,

(14) LS @y < Cp(1+r)oer.
Since [[(Rof)(@)lly < Cr(1+|f(@)I)*®, from (14) we obtain for each zeS,
(15) I(Rof)@)w < Cr(1+C (1 +r=)™

< CR(1+CI)“"(1+)')“J“"“'R_

But a0z0, < 1, 50 there exists > O such that [2Cg(1+ C )*=rJHI ~@seran) g p,
For such an r any selection f of F restricted to S, produces the mapping Rof:
§,— B,, since im R < domj. Then for a fixed continuous selection f of F on S,
the mapping joRof: S,—j(B,) = S, is continuous as well and by the Schauder
theorem it has a fixed point z,€j(B,). One can check that w = (Rof)(z,) is then
a solution of (11). = '

Since every Holder mapping satisfies the growth condition with the same
exponent we obtain
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COROLLARY 2. Theorem 1 remains true if instead of the growth conditions on
j and R we assume that they are Holder continuous with exponents o; and oy,

Remark 2. Note that if F: Z—cl(V) satisfies the condition
(ii) there exists a bounded set V¥, such that F(z) < V, for any zeZ,
then F satisfies the growth condition with exponent o, =0. m

COROLLARY 3. Theorem 1 is also true if we replace (ii) by (ii)".

4. Applications. The existence theorem for abstract inclusions (11) will be
applied to some examples concerning partial differential inclusions of parabolic
and elliptic type.

Let T be an open set in the euclidean space R™ with smooth boundary 0T
and elements ¢t = (t,,...,t,). For a =(a,,...,a,) let D*=D{...Di", where
D, = 0/0t, stands for the distributional derivative and let D = (D, ...,D,) be
the gradient. Recall that

HY(T, R*) = {veI*(T, RY): DveI*(T, R™)},

H*(T, R = {ve*(T, RY): D*veI*(T, R for |a| <2},

where |o| = a,+ ... +a,, are Sobolev spaces.with the respective norms

'

Iol = {J (v@F +Do@P)}'", ol = {{( X D*o(P)dr}"™.

T |a|s2

By H}(T, R*) we mean the subspace of H' (T, R*) consisting of those elements
ve HY(T, RY for which v],p = 0.
Now we are ready to give some examples of the abstract inclusion (11).

4.1. Elliptic inclusions. Consider the following problem:
(16) Findue HX(T, R such that Au(f)e G(t, u(t), Du(t)) ae. in T, ulyy = O,
where 4: H*(T, R)—-I*(T,R%) is the Laplace operator and G:
T x R* x R™ — cl(R¥),

THEOREM 2. Suppose that

(a) G is & ® B(R**™)-measurable, where & is the o-algebra of Lebesgue
measurable sets in T and (‘) stands for the Borel sets,
(b) the mapping G(t, -, *) is Ls.c. for every teT,
(c) there exist y<1, M >0 and mel?(T,R) such that for any
(x, y)eR*x R™
sup{[r|: reG(t, x, y)} < m@O+MA+|x{+]y))) ae in T

Then the problem (16) has a solution ue H*(T, R)nH}(T, R").
Proof. Let G be the mapping from L*(T, R**™*) into cl(L*(T, RY) given by
G(u) = {zeIX(T, RY: z()eG(t, ug(t), ..., u,(t)) ae. in T},

where u(-) = (uo(-), u,(*), ..:,u,(*)). This mapping is decomposable and ls.c.
by Proposition 3.
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Since the operator (id, D) is continuous from H!(T, RY into
L*(T, R*) x I*(T, R™), F(-) defined on H!(T, R“) by

F(v) = {ze LI*(T, R*: z(t)e G{t, v(t), Dv(t)) ae. in T}

is decomposable and l.s.c. as well. By Proposition 3, the mapping F(- )satlsﬁes
the growth condition with exponent y (and constant Cj).
By Rz denote the unique solution in H*(T, R¥) of the Dirichlet problem

Au = Z, ulaT = 0
for any zeI*(T, R*). The mapping R is a continuous linear operator from
L*(T, R*) into H*(T, R&Yn H}(T, R*) (see [12]). Therefore in order to obtain
a solution of (16) we can apply Theorem 1 for W = H*(T, R¥), V = [*(T, R¥),
Z = HY(T, R*), A= 4 and the embedding j: H*(T, R*)~ H'(T, R¥), which is
compact by the Rellich Theorem. =
ExaMPLE 1. A particular case of (16) is the problem
(17 dueGu), ulyr =0,

where T < R? and G: R?—cl(R? is the standard continuous multifunction
given by

{—x/Ix|} for |x| =1

{(cosa, sina): [ma—¢| < n(1—|x|)} if x = |x|(cosa, sina)
for 1> |x| >0,

{(cosa, sina): a€R} for x =0,

G(x) =

which does not admit a continuous selection. Thus the problem (17) has
a solution which is a Lipschitz function on T (by the Sobolev embedding
theorems). m

4.2. Parabolic inclusions, Let T=(0,1) and I=([0,a] and set
H = I*(T, R*) with the norm |-|.
Consider the class of parabolic problems

(18) Find a .continuous function u: [0, a]— H such that

W Lu=g),  u(0)eF(u),

dt
where the operator L is defined on H}(T, RYnH*(T,R*) by Lu=
(~0%u,/0x?, ..., —0*u,/0x*) with u = (u,, ...,u,) and ge L'(I, H). We impose

the following assumptions on the data j, Z , and F:

(19) Z is a Banach space;
(20) j: €I, H)> Z is completely continuous and satisfies the growth con-
dition with exponent o (and constant C));
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(21) F is Ls.c. and decomposable and satisfies the growth condition with
exponent f (and constant Cg).

We now explain the notions of “strong” and “weak” solution of the
equation du/dt+Lu =g and of the problem (18).

By a strong solution of the equation above we mean a mapping uc % (I, H)
such that for every e>0, u: [e,a—e]—H is absolutely continuous,
u(t)edomL ae. in I and

(22) du/dt+Lu=g ae. in I.

A weak solution is a limit u of strong solutions u, satisfying (22) with
right-hand sides g, tending to g in L!(I, H).

A weak solution of the problem (18) is a weak solution of the equation
satisfying the initial condition u(0)e F(ju).

Now we are in a position to formulate our result.

THEOREM 3. Assume that (19)421) hold and aff < 1. Then the problem (18)
admits a weak solution u: I - H.

This is a generalization of Theorem 38 in [8] which asserts that for every
geL'(I, H) and fe H there exists a weak solution of the problem (18) with
Z = {0} and F(0)={f}.

A unique weak solution of
(23) dufdt+Lu=g, u(0)=f

corresponding to given f and g is denoted by S(g, f).
For a fixed ge'(I, H) we define an operator R: H—%(I, H) by the
formula

(24) Rf=S5(9,f).
Before we present a proof of Theorem 3 we need two technical lemmas.
LemMMA 1. The operator R given by (24) maps H isometrically into €(I, H).

Proof. First we show that S(g,f) is a Lipschitz contraction on the
product L'(I, H)x H, i.e.

(25) 18(gy, J1)—S(g2, e,y < |S1 =12+ 19y — g2 Lra,m

for all g,, g,eL!(I, H) and f,, f,€H.
Indeed, Theorem 34 in [8] asserts that two weak solutions u, and u, of
(22) with right-hand sides g, and g, respectively satisfy

|u, (8) —u, (B)] < |“1(s)"“z(s)|+I|91(T)_92(T)|d7

for all 0 < s < t < a. Moreover, for each f € dom Lthere exists exactly one weak
solution ¥(g,f) of the initial problem. If we take u, =S(g,,f;) and



76 G. Bartuzel and A. Fryszkowski

u, = 8(g,, f,), the weak solutions of (18) with initial values f, and
f,edom L= H respectively and s = 0, we obtain
15(@1, 1) — 832, fo)ller,my = sup [u () —u, ()l

tel

< sup (juy(0)—u, (0) +6f l9,(r)— g, (x)ldr)

1e[0,a)
<1, —fz|+§ 19,0 —g>(@)|d = 1f,~Fl+ 19— Ga it

This completes the proof of (25).
From (25) applied to g, = g, = g we conclude that the operator R given
by (24) satisfies

"fo ~ R\ < \f1—1f3l.

On the other hand, sup|Rf;(t)—Rf,(t) = Rf,(0)—Rf,(0) = | f; —f,1, which
proves that R is an isometry. m

Remark 3. The above lemma implies the existence of the inverse operator
to R with domain im R closed in €(I, H). =

LEMMA 2. The operator A from € (I, H) into H given by Au = u(0) is
a retraction on H. A coretraction for it is the map R given by (24). Moreover,
R satisfies the growth condition with exponent op = 1.

Proof. Observe that (AoR)f = Au = u(0) for every weak solution of
the problem (23). Thus (AoR)f=f for each feH, because
dom L = H*(T, RYnH(T, R") is dense in H and a weak solution of the above
problem exists for each initial value fin H =domL.

Since R is an isometry by Lemma 1, it is a Lipschitz mapping and, as in
Corollary 2, it satisfies the inequality

(RS lea.m < C(1+|f]) for some constant C. m

Now having proved lemmas we can proceed to the proof of Theorem 3.

Proof of Theorem 3. By Lemma 2, the coretraction R satisfies the
growth condition with exponent ay = 1. Because of (20) and (21), the same
holds for j and F with «; = « and a; = f. Thus aya,x, <1 and domj > imR
and dom F = Z. This means that all assumptions of Theorem 1 are fulfilled.
Therefore we conclude that there exists ue (I, H) such that u(0)e F(ju) and
ueimR; in other words, u is a weak solution of (22). m

ExaMPLE 2. A special case of (18) is the class of problems

(26) Find a function u such that
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ou 0*u
E—'a? = g(t’ JC),

u(0, x)e F[|{ | x(z, z, x)uu| " (z, z)drdz|*/2],
IT

u(t, 0) = 0 = ut, 1),

where I = [0, a], T= (0, 1), ye L'(I x T x T, R***) and the mapping F(*) from
L*(T, R) into the closed subsets of H = L*(T, R*) need not admit a continuous
selection. The physical model of such a situation can be the problem of seeking
the distribution of concentrations and/or temperatures u(t, x) in a pipe of
length 1 for a given arbitrary emission-absorption field g(t, x). Initial const-
raints .depend on a nonlinear mean-value observed from a measuring device
with characteristic y which can depend on time. If we fix g, =2, ¢, =1 and
X = Xla—e.q)x 7= 71 g, We deduce that for an arbitrary time g there exists a real
b = 0 such that

b2 =| [ [u(, z)dtdz|

a=eT
and the trajectories ‘u(t, x) are generated by the set of initial values F(b).

COROLLARY 4. The problem (26) admits a weak solution ue¥(l, H) if we
assume that 0 <gq, <2, max(l, q,)<gq, < +00, x(:, ", x)eLl'(IxT, R**¥,
x(t, z, )e’(T, R**", ra > 1 and r, oe[1, + 0].

It is sufficient to show that the mapping j: €(/, H) - L[*(T, R) defined by
(27) (W) = | § x(z, z, x)ulul® ™" (z, z)dvdz| /%
IT

is completely continuous and fulfils the growth condition with Z = I*>(T, R). =

LEMMA 3. The mapping j: €(1, H)— Z given by (27) is completely continuous
and satisfies the growth condition with exponent o= q,/q, < 1.

Proof. Step 1. The mapping T,, given by T, (u) = uu/** ! is continuous
from €(I, H) into I}(I x T, R¥) as in the proof of Corollary 1 and, moreover,

1T, ullerxr < Cy |ullgq,m

provided only s =2/q, > 1.
Step 2. The operator U from I¥(I x T, R*) into L{(T, R¥) given by

U) = H‘v(z, 2)x(t, z, x)dvdz

is linear and compact if we assume that s > 1 and ro > 1. This is an immediate
consequence of Theorem XI.3.3 from [9].
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Step 3. The mapping |T,,,|(w) = |w|*/®" is continuous from L¥(T, R) into

[?2/(T, R) if g, > 1 and into Z = I*(T, R) for q,/q, < 1. We also have

1
Ty Wl < C Wl

Step 4. The mapping j = |Ty,,|0UoT,, is actually into W and since U is

compact, j is completely continuous. Moreover,

ul < C,(1+ Nl m)™ .

Indeed,
. 1 1
jul < C,IU Tl < Call T, ulfir < Cluléirh. =
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