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TIGHT EXTENSIONS OF GROUP-VALUED QUASI-MEASURES
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The main result of the paper (Theorem 1) is concerned with extension of
an additive and exhaustive set function u on an algebra I further called a
quasi - measure, with values in an Abelian complete Hausdorff topological
group. The quasi-measure u is assumed to be K-tight, where & is a lattice
of sets. (In Marczewski’s terminology [13], K approximates R with respect
to u.) The domain of the extension v is the algebra generated by Mu K and
v is a RK-tight quasi-measure. The result is an improvement of an earlier
theorem of the author [8]. Its two major consequences (Theorems 2 and 3)
imply the corresponding results of Henry [4], Lembcke [7], Bachman and
Sultan [1], and Dalgas [2], which are, in turn, generalizations of several
previous results. It should be pointed out, however, that, in contrast with the
effective method of Dalgas, the proof of Theorem 1 is necessarily based on
an uncountable form of the axiom of choice.

The terminology and notation to be used below mostly follow those of
[8]. Throughout G denotes an Abelian complete Hausdorff topological group
and X stands for an arbitrary (nonempty) set. The family of all subsets of X
is denoted by 2*.

Let I be an algebra of subsets of X. An additive set function u: M- G
generates a group topology on I (equipped with the symmetric difference of
sets as the group operation), the u-topology, which is determined by the
neighbourhood base at @

{MeD: u(S)eV for all M > Se M},

where V runs through a neighbourhood base at 0 in G (see, e.g., [8], p. 24).
The denseness and closure with respect to this topology will be referred to as
u-denseness and u-closure, respectively.

We say that u is K-tight, where & = 2% if for every Me M and a
neighbourhood V of 0 in G there exist Ke R and MeI such that
McKcM and

u(S)e V whenever Se M and S =« M\M ().

(") For positive real - valued set functions this notion was introduced by Marczewski §13],
p- 116; see also [4], p. 237.
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In case & = M we can, clearly, take M = K. In that generality the notion of
K -tightness appears in [8], Definition 2, and, under the name of K-
regularity, in [2], 2.6, and [6], p. 188.

We say that an additive set function u: M — G is a quasi - measure if it is
exhaustive, i.e., u(M;) - 0 for every sequence (M;) of pairwise disjoint sets in
M ([8], Definition 1). The function u generates its inner and outer extensions
u, and u* to 2% (see [8], p. 22, for definitions).

A set function u: M — G is called a measure if M is a g-algebra and u
is o -additive.

LEMMA. Let M be an algebra of subsets of X, let R < 2X and let Z = X.
Every R-tight quasi-measure p. M— G extends to a quasi-measure v: N
— G, where N is the algebra generated by My {Z}, such that v is tight with
respect to the family

{(Kl nZ)UKz: Kl’ KZER and Kz CZC}

and M is v-dense in N.

Proof. Put v(N)=p*(Nn2Z)+u,(NnZ°) for NeR. In view of [8],
Lemma 5 and its proof, we only have to show the tightness assertion. Since

NR={M,nZ)u(M;nZ): M, Mye W}

and Qe K, it is enough to establish the approximation condition separately
for the disjoint sets M, nZ and M, n Z°. Fix a closed neighbourhood V of 0
in G.

Choose K,e® and M,eM such that M, c K, c M, and u(S)eV
whenever Se and S < M,\M,. We have M\,nZcK,nZcM,nZ.
Since M is v-dense in N, it follows from [10], Lemma, that v(N)eV
whenever Ne 9t and N = M,\ M,. In particular, the same holds whenever
NeMN and

N c (M, nZ2)\(M, n Z).

Let W be a neighbourhood of 0 in G with W+ W < V. According to [8],
Lemma 1, there exists M e M such that M = M, N Z¢ and u(S)e W whenever
SeM and S =« (M,nZ)\ M. Since u is K-tight, there exist K,e & and
M,eM such that M,cK,cM and u(S)eW whenever SeM and
ScM\M,. We have M,cK,cM,nZ° Assume that Ne®R and
N c (M, N Z)\M,. For every Se M with S = N we have

S=S~nMuUS\M) and SAMcM\M, and S\Mc(M,nZ)\M.

Hence u(S)e V. It follows that v(N) = pu,(N)eV.

The following result generalizes [8], Theorem 3 (see also [14],
Corollary), and, partially, [7], Satz 3.1. The proof is based on a method due
to J. Los and E. Marczewski. In fact, we use a combination of two
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improvements of this method due to Henry [4] (see also [1]) and the author
[8] (see also [11], Remark 5). ~

THEOREM 1. Let MM be an algebra of subsets of X and let | be a lattice
of subsets of X. Every R-tight quasi- measure u: Y — G extends to a K-tight
quasi - measure @: & — G, where & is the algebra generated by Mu K, such
that M is ¢-dense in .

Proof. Consider the class M of all pairs (R, v) with the following
properties:

(a) N is an algebra of subsets of X with M N F.

(b) v: M — G is a quasi - measure.

(c) v|M=p

(d) M is v-dense in N.

(e) v is K-tight.
We define a (partial) ordering < in M by putting (N, v,) <(N,, v,)
provided that 9, = N, and v,|N; =v,. Let {(N,, v,): te T} be a chain in M.
Put M= N, and v(N) =v,(N) if NeN,. We claim that (N, vyeM and

teT

(N, v) < (N, v). Clearly, (a) holds and v is well defined and additive on .
Moreover, (c) holds. Property (d) follows from [11], Lemma 1. Hence, in
view of [8], Lemma 4, v is exhaustive, and so (b) holds. To prove (e), fix
NeMN. Since Ne N, for some te T, given a closed neighbourhood V of 0 in G,
there exist Ke R and NeR, such that N < K = N and v,(S)e V whenever
SeM, and S = N\N. Since N\Ne N, and N, is v-dense in N, it follows from
[10], Lemma, that v(R)e V whenever Re it and R = N\ N.

Let (N, vo) be a maximal element of M with respect to the ordering <
whose existence follows from the Kuratowski-Zorn Lemma. We claim that
N, = & which proves the theorem. Otherwise, take Ze ]\ N, and apply the
lemma above to RN,, & Z and v,. The resulting pair (R,, v;) obviously
satisfies conditions (a)(c) and (e), while (d) follows from [10], Lemma.
Moreover, (No, vo) < (N;, v;). Thus (N, vo) is not maximal in M, a
contradiction.

Remark. In the situation of Theorem 1, if u is £-tight, where = ]
then £ is ¢-dense in &. Indeed, by the definition of £-tightness and [10],
Lemma, the ¢-closure of € in N contains M.

Our next result partially generalizes a theorem of Lembcke ([7], Satz
4.5). The case where M is a o-algebra and u is (] n M) -tight and takes
values in [0, o) is due to Plebanek ([15], Theorem 2.6.2).

THEOREM 2. Let M be an algebra of subsets of X and let K be a lattice of
subsets of X such that for every sequence (K,) in & with K, | @, we have K,

= @ for some nqy (?). Then every RK-tight quasi-measure u: M— G extends

(3) That is, R is a compact class of sets in the sense of Marczewski ([13], Section 2; cf.
also [12], p. 22).



216 Z. LIPECKI

to a R;-tight measure v: N— G, where N is the o-algebra generated by
Mo K such that M is v-dense in N.

Proof. By Theorem 1, u extends to a K-tight quasi-measure ¢: &
— G, where § is the algebra generated by Mu K, such that M is ¢ -dense in
& In view of [9], Theorem 1, ¢ is o -additive. Hence ¢ extends uniquely to
a measure v: N— G (see, e.g., [3], Theorem 9.2). In view of [9], Lemma 4, v
is K;-tight. Moreover, & is v-dense in N (cf. [3], Theorem 8.2). It follows
that M is v-dense in N ([10], Lemma).

The following theorem generalizes results of Henry ([4], Théoréme 1; cf.
also Lemme 1 thereof), Bachman and Sultan ([1], Theorem 2.1), and Dalgas
([2], Theorem 3.6 without property (*)).

THEOREM 3. Let M be an algebra of subsets of X and let K and L be
lattices of subsets of X such that Q = R and for every sequence (K,) in ] with
K,| @ and LeQ there exists a sequence (M,) in MM with M,| @ and
K,nLc M, for n=1, 2,... (). Then every o-additive L-tight quasi-
measure u: M— G extends to a K;-tight measure v: N — G, where N is the
o -algebra generated by MU K, such that M is v-dense in N. If, additionally,
K N Le @ whenever Ke K and Le @, then v is L-tight.

Proof. Let ¢ and § have the same meaning as in the proof of
Theorem 2. Once we know that ¢ is o -additive, we can proceed exactly as
in the proof of that theorem.

Since ¢ is K-tight, to prove the ¢ -additivity of ¢, it is enough to show
that for every sequence (K,) in & with K,| @ we have ¢(K,)— 0 ([9],
Theorem 1). Fix a closed neighbourhood V of 0 in G and choose Le £ such
that ¢(F)eV whenever Fe § and FNnL = O (see the remark above). By
assumption, there exists a sequence (M,) in M with M, | @ and K,NnL< M,
for n=1, 2, ... Let ny be such that u(M)e V whenever Me M and M = M,

(see, e.g., [6], Lemma 13). Then ¢(F)e V whenever Fe § and F = M, ([10],
Lemma). In particular, ¢(K,n L)eV for n > n,. It follows that

o(K,) =o(K,nL)+¢o(K,\L)eV+V

for n > n,.

To establish the additional assertion, take ¥ and L as in the first part of
the proof. Fix NeM and choose Ke &; such that K< N and v(R)eV
whenever Re M and R =« N\ K. Then Kn Le £ and K n Lc N. Moreover, if
ReM and R = N\(K N L), then

R =[Rn(N\K)JU[RN(K\L)].
Hence, in view of [10], Lemma, v(R)e V+ V.

.(3) That is, MM dominates | on € in the terminology of [2], Definition 3.2. In case X e £,
this is identical with & being M-countably paracompact in the terminology of [1].
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The next simple result yields a sufficient condition for the uniqueness of
an extension in the situation of Theorems 1-3.

ProrposiTioN (cf. [1], Theorem 2.1, and [2], Lemma 5.18(1)). Let M and
N be algebras of subsets of X with M < N and let v: N— G be a K-tight
additive set function, where & — M. If every pair of disjoint sets in ] can be
separated by disjoint sets in I then for every Ke K we have

v(K) =lim{v(M): K c MeM},

where the index set {MeM: K = M} is directed downwards by inclusion.

Proof. Fix Ke & and a neighbourhood V of 0 in G. Then we can find
K, e 8 with the properties: K; < X\K and v(N)eV whenever Ne N and
N < X\(K UK,). By assumption, there exists MeI with K <M and
MnK,= 0. Let MeM and K = M = M. Then

M\K c X\(K UK,), whence v(M)—v(K)=v(M\K)eV.

The following corollary to Theorem 2 improves a result of Khurana
([5], Theorem 1), which is, in turn, a generalization of the corresponding
result for positive real - valued measures due to H. Bauer, J. Hardy and H. E.
Lacey, and Henry [4] (see [S] for other references). Before formulating the
corollary, we recall that a G - valued measure u on the Borel ¢ -algebra B(Y)
of a compact (Hausdorff) space Y is termed (inner) regular if it is K(Y)-tight,
where KR(Y) is the family of all compact subsets of Y.

CoroLLARY. Let X and Y be compact topological spaces and let f: X
— Y be continuous and surjective. Then for every regular measure u: B(Y)
— G there exists a regular measure v: B(X)— G such that u(B) = v(f~'(B))
for all Be B(Y) and the o -algebra

M= {f!(B): Be B(Y)}

is v-dense in B(X).

Proof (cf. [4], proof of Théoréme 2). Put u,(f~'(B)) = u(B) for all
Be B(Y). Since f is surjective, y, is well defined and ¢ - additive on M. Since f
is continuous, M < B(X) and {f ' (K): Ke K(Y)} = K(X). It follows that
o is K(X)-tight. The assertion is now a consequence of Theorem 2.

Postscript. A recent paper by Adamski [0], which appeared after the
submission of our paper for publication, deals with related problems
concerning tight set functions with values in [0, c0]. We shall compare some
results of [0] with those obtained above. The notation used in the sequel
without explanation follows [0].

1. In the case where 4 is bounded, Lemma 2.1 and Theorem 2.2 of [0]
follow from the lemma and Theorem 1 above with the help of [9], Theorems
1 and 3(d).
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2. For finite u, Theorem 3.1 of [0] follows from Theorem 3 above with
M=o/, K= A, and &= X, with the help of [13], 4i).

3. The existence part of [0], Theorem 3.4(a), follows from Theorem 1
above, while the uniqueness part is a consequence of the proposition above.

4. The existence part of [0], Theorem 3.4(b), follows from Theorem 3
above with M=o (H",), K = A, and £ = X', while the uniqueness part is
a consequence of the proposition above.

5. For finite u, the existence parts of Theorems 3.2 and 3.3(a) of [0]
follow from Theorems 1 and 3 above, respectively, with the help of [8],
Theorem 2. The details will appear elsewhere.

Added in proof. Related results are contained in the author’s paper
On unique extensions of positive additive set functions. II, Archiv der
Mathematik, to appear.
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