IRREGULAR CONVEX SETS WITH FIXED-POINT PROPERTY
FOR NON-EXPANSIVE MAPPINGS

BY

K. GOEBEL AND T. KUCZUMOW (LUBLIN)

Let X be a Banach space with norm $\| \cdot \|$ and let C be a non-empty bounded closed subset of X. The mapping $T: C \rightarrow C$ is said to be non-expansive if

$$\|Tx - Ty\| \leq \|x - y\| \quad \text{for} \ x, y \in C.$$

We say that C has the fixed point property for non-expansive mappings (shortly, f.p.p.) if each non-expansive mapping $T: C \rightarrow C$ has at least one fixed point.

It is known that f.p.p. for the set C depends strongly on the "nice" geometrical properties of the space X or on the set C itself. Among bounded closed convex sets having f.p.p. there are, for example, all compact ones, all sets in uniformly convex space X ([1], [3]), all weakly compact sets having normal structure [6], all weakly compact sets in the space X satisfying so-called Opial's condition [7], all weak-star compact subsets of l^1 [4], and all sets in a very special "geometrically bad" but still reflexive space X_F [5].

Our aim here is not to prove any new sufficient conditions for f.p.p. but to construct several examples of very irregular sets still having f.p.p. but not satisfying the above-mentioned conditions. Our sets are not even weak-star compact. We would like to turn attention to some singularities occurring in this field.

Our method is based on the notion of asymptotic center [2]. Let C and X be as above and let $\{x_n\}$ be a bounded sequence of elements of X. Consider a function $r: X \rightarrow [0, \infty)$ such that

$$r(y) = \limsup_{n} \|x_n - y\|.$$

It is a convex function of y depending obviously also on the sequence $\{x_n\}$. However, we skipped this dependence in the notation, which should not lead to any misunderstanding in this paper. The value $r(y)$ is called the asymptotic radius of $\{x_n\}$ at y, and the number

$$r(C) = \inf \{r(y) : y \in C\}$$
is the asymptotic radius of \(\{x_n\} \) with respect to \(C \). The set
\[
A(C) = \{ y \in C : r(y) = r(C) \}
\]
is called the asymptotic center of \(\{x_n\} \) in \(C \). Obviously, \(A(C) \) is closed and convex but it may be empty.

The connection between f.p.p. and the asymptotic center is given by the following easy lemmas:

Lemma 1. If \(T : C \to C \) is a non-expansive mapping, then
\[
\inf \| x - Tw \| : x \in C = 0.
\]

Lemma 2. If \(T : C \to C \) is non-expansive and \(\{x_n\} \) is a sequence of elements of \(C \) such that \(x_n - Tw_n \to 0 \), then \(A(C) \) is invariant under \(T \). Especially, if \(A(C) \) contains exactly one point, then it is fixed under \(T \).

The proofs are standard. The next observation is the following

Trivial Theorem. If each sequence \(\{x_n\} \) of elements of \(C \) contains a subsequence whose asymptotic center in \(C \) is non-empty and has f.p.p., then \(C \) has f.p.p.

The theorem follows immediately from our lemmas.

We shall construct our examples for \(X = l^1 \), so denote by \(\{e^i\} \) the standard basis \(e^i = \{\delta_j\} \), by \(P_i \) the natural projection of \(l^1 \) on the space spanned by \(e^1, e^2, \ldots, e^i \), and let \(I \) be the identity. For any set \(K \), Conv \(K \) will denote the closed convex envelope of \(K \).

Lemma 3. If \(\{x_n\} \) is a sequence in \(l^1 \) converging to \(x \) in weak-star topology, then for any \(y \in l^1 \)
\[
r(y) = r(x) + \|y - x\|.
\]

Proof. Notice first that for any \(i = 1, 2, \ldots \)
\[
r(x) = \limsup_{n \to \infty} \|(I - P_i)(x_n - x)\|,
\]
\[
\|x - y\| = \lim_{i \to \infty} \lim_{n \to \infty} \|P_i(x_n - y)\|,
\]
\[
\lim_{i \to \infty} \|(I - P_i)(x - y)\| = 0.
\]

Then the thesis follows from the inequality
\[
\|P_i(x_n - y)\| + \|(I - P_i)(x_n - x)\| - \|(I - P_i)(x - y)\| \leq \|x_n - y\|
\]
\[
\leq \|P_i(x_n - y)\| + \|(I - P_i)(x_n - x)\| + \|(I - P_i)(x - y)\|
\]
by passing to infinity first with \(n \) and then with \(i \).

Lemma 4. Let \(\{x_n\} \) be a sequence of elements of \(l^1 \) converging to \(x \) in weak-star topology. Then
\[
A(C) = \text{Proj}_x, \quad \text{where} \quad \text{Proj}_x = \{ y \in C : \|x - y\| = \text{dist}(x, C) \}.
\]
Lemma 4 is an immediate consequence of Lemma 3. This lemma is also true without assumption of convexity of \mathcal{C}. Also it is worth to notice that the set $\text{Proj} w$ may be empty.

Let us construct now a special set \mathcal{C}. Take any bounded sequence of non-negative reals $\{a_i\}$ and put $f^i = (1 + a_i)e^i$.

Let

$$\mathcal{C} = \text{Conv} \{f^i\} = \left\{ x = \sum_{i=1}^{\infty} \lambda_i f^i : \lambda_i \geq 0, \sum_{i=1}^{\infty} \lambda_i = 1 \right\}.$$

The set \mathcal{C} is closed convex but it is not weak-star compact, since the weak-star limit of $\{f^i\}$ is the origin which does not belong to \mathcal{C}. The weak-star closure of \mathcal{C} is

$$\overline{\mathcal{C}} = \left\{ x = \sum_{i=1}^{\infty} \mu_i f^i : \mu_i \geq 0, \sum_{i=1}^{\infty} \mu_i \leq 1 \right\}.$$

For any $x \in \overline{\mathcal{C}}$ put

$$\delta_x = 1 - \sum_{i=1}^{\infty} \mu_i.$$

Obviously, δ_x is well defined, since the representation of x as a combination of $\{f^i\}$ is unique. Finally, let $a = \inf a_i$ and $N_0 = \{i : a_i = a\}$.

Lemma 5. For any $x \in \overline{\mathcal{C}}$

$$\text{dist}(x, \mathcal{C}) = \delta_x (1 + a)$$

and

$$\text{Proj} w = \text{Conv} [x + \delta_x f^i : i \in N_0].$$

Proof. We have

$$\text{dist}(x, \mathcal{C}) \leq \inf [(\|x - (x + \delta_x f^i)\| : i = 1, 2, \ldots)]$$

$$= \inf [(1 + a_i) \delta_x : i = 1, 2, \ldots] = \delta_x (1 + a).$$

On the other hand, if

$$y = \sum_{i=1}^{\infty} \lambda_i f^i \in \mathcal{C} \quad \text{and} \quad x = \sum_{i=1}^{\infty} \mu_i f^i \in \overline{\mathcal{C}},$$

then

$$\|x - y\| = \sum_{i=1}^{\infty} |\lambda_i - \mu_i| (1 + a_i) \geq \left| \sum_{i=1}^{\infty} \lambda_i - \sum_{i=1}^{\infty} \mu_i \right| (1 + a) = \delta_x (1 + a).$$

It shows also that for $y \in \mathcal{C} \setminus \text{Conv} [x + \delta_x f^i : i \in N_0]$

$$\|x - y\| > \delta_x (1 + a).$$

Example 1. The set \mathcal{C} described above has f.p.p. if and only if N_0 is non-empty but finite.
Proof. Take \(\{x_n\} \) to be a weak-star convergent sequence of elements of \(C \) and let \(x \) be its limit. If \(N_0 \) is non-empty but finite, then — in view of Lemmas 4 and 5 — \(A(C) \) is compact and, since each sequence contains a weak-star convergent subsequence, the assumptions of our Trivial Theorem are fulfilled.

Suppose now that \(N_0 \) is empty. Take \(\{a_{i_k}\} \) to be a strictly decreasing subsequence of \(\{a_i\} \) such that

\[
\lim_{k \to \infty} a_{i_k} = a.
\]

Let

\[
N_k = [i: a_{i_k} \leq a_i < a_{i_{k-1}}] \quad \text{for} \quad k = 1, 2, \ldots \quad (a_{i_0} = +\infty).
\]

Define \(T: C \to C \) by

\[
(*) \quad T: x = \sum_{i=1}^{\infty} \lambda_i x^i \mapsto \sum_{k=1}^{\infty} \mu_k x^{i_{k+1}} \text{, where } \mu_k = \sum_{i \in N_k} \lambda_i.
\]

It is non-expansive and fixed point free.

Now, let \(N_0 \) be infinite and let \(N_0 = [i_1, i_2, \ldots] \). Put

\[
N_k = [i: i_{k-1} < i \leq i_k] \quad \text{for} \quad k = 1, 2, \ldots \quad (i_0 = 0).
\]

We see that \(T \) defined by \((*) \) is also non-expansive and fixed point free.

Proof. Take any \(b > 0 \) and construct the set \(C_1 \) in the way described above putting \(a_1 = 0 \) and \(a_i = b \) for \(i = 2, 3, \ldots \). Then construct the set \(C_2 \) in the same way putting \(a_1 = \frac{1}{2} b \) and \(a_i = b \) for \(i = 2, 3, \ldots \). Then \(C_1 \) and \(C_2 \) have f.p.p. but

\[
C_3 = C_1 \cap C_2 = \text{Conv}[(1+b) e^i: i = 2, 3, \ldots]
\]

fails to have it.

Example 3. There exists a sequence of sets \(\{C_n\} \) such that \(C_1 \supset C_2 \supset C_3 \supset \ldots \), and \(C_n \) has f.p.p. for \(n = 1, 3, 5, \ldots \) and does not have it for \(n = 2, 4, \ldots \) Moreover, this sequence may be such that

\[
C_\infty = \bigcap_{n=1}^{\infty} C_n
\]

is non-empty and does have or does not have f.p.p. up to our choice.

Proof. Take any bounded increasing sequence \(\{b_n\} \) of positive reals and then take the double indexed sequence \(\{a_{in}\} \) of positive reals such that

\[
\ldots < a_{21} < a_{21} < a_{11} < b_1 < \ldots < a_{22} < a_{12} < b_2 < \ldots
\]
Use the sequence \(\{a_{in}\} \) to construct the set \(C \) in the following way.
Let \(N \) denote the set of integers and let \(\varphi: N \times N \to N \) be a 1-1 correspondence. Put
\[
f^{t,i,n} = (1 + a_{in})\varphi^{t,i,n}
\]
and select any sequence \(\{a_{tn}\} \). Now put
\[
C_{2n-1} = \text{Conv} [f^{t,i,n}: a_{ik} \geq a_{tn}] ,
C_{2n} = \text{Conv} [f^{t,i,n}: a_{ik} > b_n].
\]

Then the first part of our statement is proved.

To get the second part it is enough to take first a non-empty subset \(N_{\infty} \subset N \) such that \(N \setminus N_{\infty} \) is infinite, then repeat our construction on the basis vectors with indices \(i \notin N_{\infty} \), and put \(f^i = (1 + b)\varphi^i \) with \(b > b_n \) for all \(n \) if \(i \in N_{\infty} \). Then
\[
\bigcap_{n=1}^{\infty} C_n = \text{Conv} [f^i: i \in N_{\infty}]
\]
has f.p.p. if \(N_{\infty} \) is finite and does not have it if \(N_{\infty} \) is infinite.

The last example is of a little different nature. Let \(X_1 \) be an arbitrary uniformly convex Banach space and put \(X = X_1 \times l^1 \) with the norm
\[
\|(x, y)\|_X = \max [\|x\|_{X_1}, \|y\|_{l^1}].
\]

Let \(C_1 \) be an arbitrary non-empty bounded closed and convex subset of \(X_1 \) and let \(B \) be a unit ball in \(l^1 \). Put \(C = C_1 \times B \).

Example 4. \(C \) has f.p.p.

Proof. First notice that each sequence \(\{(x_n, y_n)\} \) of elements of \(C \) contains a subsequence with \(\{y_n\} \) weak-star convergent. Moreover, the asymptotic center of any sequence in a uniformly convex space contains exactly one point [2]. Let then \(\{(x_n, y_n)\} \) be such that \(\text{w}^*\text{-}\text{lim} y_n = y \). The asymptotic radius of this sequence with respect to \(C \) is equal to
\[
r = \max [r_1, r_2],
\]
where \(r_1 \) is the asymptotic radius of \(\{x_n\} \) in \(C_1 \) and \(r_2 \) is the asymptotic radius of \(\{y_n\} \) in \(B \). Let \(\{x\} \) be the asymptotic center of \(\{x_n\} \) in \(C_1 \). The asymptotic center \(\text{A}(C) \) of \(\{(x_n, y_n)\} \) in \(C \) is equal to \(\{(x, y)\} \) if \(r_1 = r_2 \). However, if \(r_1 < r_2 \), then
\[
\text{A}(C) = \{z \in C_1: \limsup_{n} \|x_n - z\|_{X_1} \leq r_2\} \times \{y\},
\]
which has f.p.p. as it is isometric to the closed convex and bounded subset of \(X_1 \). On the other hand, if \(r_1 > r_2 \), then
\[
\text{A}(C) = \{x\} \times \{z \in B: \limsup_{n} \|y_n - z\|_{l^1} \leq r_1\}
\]
\[
= \{x\} \times \{z \in B: \|z - y\|_{l^1} \leq r_1 - r_2\}.
\]
according to Lemma 3. This set is isometric to the intersection of two balls in l^1 and such an intersection is weak-star compact. So, in view of [4], it has f.p.p. As we see, the assumptions of Trivial Theorem are fulfilled, so C has f.p.p.

Let us finish with the metamathematical statement, not quite clear but in our opinion in some sense true:

For any sufficient condition for f.p.p. there exists a set having f.p.p., which does not satisfy it.

REFERENCES

M. CURIE-SKŁODOWSKA UNIVERSITY
INSTITUTE OF MATHEMATICS, LUBLIN

Reçu par la Rédaction le 20. 4. 1977