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Convergence of generalized-approximate iterations
for an abstract equation -

by TADEUSZ JANKOWSKI (Gdansk)

Many authors have been interested in the solution of an abstract
equation

(1) @ = f().

In papers [1], [2], [4] it is shown that under certain quite general
agsumptions, there exists a unique solution Z of equation (1). In papers [2]
and [3] conditions are given by which a sequence {z,} is convergent to
a solution of equation (1), and in [1], [2], [3] and [4] it is shown in what
way the sequences {z,} are created.

In this paper, we analyse the generalized-approximate process (see [1],
P. 40) defined by the relation

‘(2) Yn =fn.k(yn? yn—l)’ Yo :w*’ k>17 n=0,1,...,
where
(3) {fn,l(wiy) = fu (2, 9), n=20,1,...,

fn,i(m7 Y) =fn($7fn,i—1(w7 y))v 1t =2,3,...,kn=1,2,...

Conditions are given under which the sequence {y,} is well-defined,
-convergent to a unique solution of equation (1), and also estimations
-of erros are given. Moreover, it is proved that for certain conditions the
estimations of errors are not worse than the estimations for a certain
sequence {x,} in paper [2].

For the case

(4) fn,k("‘v7 Y) = fo(2,9),

the sequence {y,} is analysed in papers {1], [2] and [3], and for
(5) fn,k(wy y) =filz,y), k=1,

where

filz,y) = f(z, ),
filz, 9) =f(a’7fi—l(mry))r 1=2,3,..,k,
the sequence {y,} is considered in paper [1].
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Assumptions and lemmas do not differ much from those given in the
papers of Kwapisz, Wazewski and Kurpiel.

1. Assumptions, definitions and lemmas. We introduce the following'

AssumpTioN H, (see [4], [2]). 1° @ is a partially ordered set (an
ordering relation is denoted by <, we write v < v iff v <v or u = v),
in G there exists an element 0 such that 0 < u for any ueG;

2° for any u,veG@ a relation w+v is defined and has the following
properties:

(a) if u,v,weq, then u+0ve@,u+v =v+u, (u+2)+w = u+4 (v+
+w), u+0 = u;

(b) if u,v,weG and u < v, then u+w < v+ w;

(e) if u,v, we@ and u+ov < w, then u < w;

*  3°for any non-increasing sequence {%,}, 4, eG4, , < %,,n = 0,1, ...,

there exists a unique element ue@ called the limit of the sequence {u,}
(we write w = lim %, or w,Nwu).

n—00

The limit has the following properties:

(a) lim w, is invariant with respect to the change of a finite number-
n—o0

of elements of the sequence {u,},

(b) if v, =u, » =0,1,..., then lim u, = «,
n—-00

(e) if u,Nu, v,Nv and %, <v,, then u <,

(d) if u,u, v, o, then Up+ VU 0.,

AssuMPTION H, (see [4]). The function a(u) is defined for ued < G-
and has the following properties:

1° a(4) = G, where 0ed and if ke A, then ueA for any u < k,

2° if u,ved and u < v, then a(u) < a(v);

3°if u,ed, n =0,1,..., and u,\u, then a(u,)Na(%);

4° 4 = 0 is the only solution in A of the equation » = a(u).

DEFINITION (see [4]). For any ueAd we define the sequence {a,(u)}
of the iterations of the element « by-the recurrent formula

ay(u) =u, @,,,(u) = a(a,(u)) if a,(u)ed, n =1,2,...

We state the following

LeEMMA 1 (see [4]). If Assumption H, is fulfilled and there exists:
a ced such that a(c) < c, then all iterations a,(c)y,n =0, 1,..., of the
element ¢ exist and

)< a,(e)<e, n=0,1,..., and a,(c)0.
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COROLLARY 1. From Lemma 1 and Assumption H, we have
a, (%) < a,(¢) < ¢, uel0,¢], » =0,1,...
AssuMpTiON H,. u = 0 is the only solution in 4 of the equation:
u = a,(u), k > 1, where a,(u) is definite in the definition.

LevmA 2. If Assumption H, (except 5°) ¢s fulfilled and there exist
ged and beA such that

gt+ea(b)<b,
then the equation .
w=aw)+g, k=1,
has the solution w = m(k,b,q) < b, which has the properties:
1° m(k, b, q) = lim b,(k, b, q), where by(k,b,q) =b, by.(k,bd,q)
n—>0o
= a’k(bn(k’ b, Q))+Qy n=20,1,...,
2°if p<b and p<a,(p)+q, then p<m(k,b,q).
LEMMA 3. If assumptions H, (except 5°) and H, are fulfilled and
there exist q,,bye A, qui1 < Qny boyy < by, n,8 =0,1,..., such that
g,+ab)<b, for any n,8=0,1,...,
then the equation
U = @ (%) + gy, k=1

has a solution u = m(k, b,, q,) < b, such that

m(k,bgy @) <m(k,bsyq,), 8,7 =0,1,...,
m(k, b1, q,) <m(k, b q,), sn=0,1,..
Moreover, if q,~q and b,’xb, then
m(k, b,, q¢,)N\m(k, b,,q), $=0,1,...,
m(k, by, q,)xm(k,b,q,), n=0,1,...,
and consequently, if ¢ = 0, then m(k, b,, q,) 0.

Lemmas 2 and 3 can be proved in the same way as Lemma 1 [4],
and 3 [2]. \

AssuMPTION H;. The funection A (u,v) is defined for u,ved and
has the following properties:

1° 4(4x 4) = G;
2° if w,u,v,ved and u < w,v <7, then A(u,v)<< A", v);

3°if w,,v,ed,m =0,1,..., and u,Nu,v,\v, then A(u,,v,y
N A{u, v);

4° w = 0 is the only solution in A4 of the equation u = A (u, u);
5° u = 0 is the only solution in 4 of the equation v = 8,(0, 4, u, u)
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‘where B,(q, 4,u,v) =q+A(u,v), Bi(g,4d,u,v) =q+a(u,p;, ,(q, A
%, v)), ¢, %, ved, 1—23 , k.

LEMMA 4. If Assumption H, (except 4°-5°) is fulfilled, then

1°ifuu'vv,q,qu and A(AXA)c @G, and v <%, v < 7, g <
A, v)< A(u, v), then

Bilg, A,u,v)< B;(7, 4,,9), i=1,2,...,k,
2°4f Up, 0, qued,m =0,1,..., and u,\u, v, \v, q,°\q, then
ﬁi(quA"”'m'vn)\-*ﬁi(q’A"u:v)y t=1,2,...,k.
Moreover, if there exist q, bed such that
q+A(b, b) < b,
‘then
Bilg, A,u,v)<b, u,ve[0,d], i=1,2,..,k,

-and
Bilg, A, u, b)< B;_,(q,4,u,b), ue[0,b],7=2,3,...,k.

The proof. of Lemma 4 is obvious.
LEMMA 5. If the assumptions of Lemma 4 are fulfilled, then for any

v< b there exists a solution m,(k, A,b,q) < b of the equation
{6) w =ﬂk(Q7-A7“7"7)1 k=
Moreover, if w<b and w < f,(q, A, w,v), then

w<my(k, A,b,q)<b
Proof. Put

% = b, Up 41 = Brlg, 4, u,,v), = =0,1,...,
‘we have
u, \m,(k, A, b,q)<b, w<wu, n=0,1,...,

-whence we get the assertion of Lemma 5.

LeMMA 6. If Assumption H, (except 4°) is fulfilled and there ewist
q,bed such that ¢+A(b,d)<b and ¢,,, < ¢ <qg, n=0,1,...,¢,\0
-aond m, ,(k,A,b,q,.,) 8 a solution of the equation

‘u'=ﬂk(9n+11A7“1mn(k’A’byqn))’ mo(k, A,b,q)=b, n=0,1,...,

2hen m,(k, A, b, q,) 0.

Moreover, if wy,,; < Pr(lusry 4, Wypy,w,) and w, <Db, then w,
<m,(k,A,bd,q,), and consequenily, w, 0 (3f w,,, < w,).
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Proof. Because m,y(k, A, b, q,) = b, it follows from Lemma 5 that
there exists an m,(k, A, b, q,), and we obtain by induction
My (k) Ay by @iy) <m,(k, 4,b,q,), = =0,1,...,
w,,gmn(k,A,b,q,,), n=0,1,...

Hence, if n - oo, we get the assertion of Lemma 6.

Remark 1. If the assumption ¢+ A(b,db)<b is replaced by
B.(q, A, b,b) < b, then Lemmas 5 and 6 remain true.

DEFINITION (see [2]). m(k, 4, q) is called the maximal solution of
equation (6) if it satisfies this equation and for any solution u(k, 4, q)
of (6) the inequality #(k, 4, ¢) <m(k, A, q) holds true.

LEMMA 7. If Assumption H, (except 4°) s fulfilled, A = G and if
for any v, qeG there exist maximal solutions m(k, A, q), m,(k, A, q) of
the equations

w = B.(q, A, u,u), u=P(q 4,u,v)

and if d < (g, A4, d, v), de@G, then d < m,(k, A, q).
Moreover, if q,~0 and m, ,(k, A, q,.,) 18 the mazimal solution of
the equation

U = ﬂk(q'n+1’ A, uy,m,(k, A, Qn))’ mo(k, 4, q) =m(k, 4, q,),

n=20,1,...,
and

'wn+1<.ﬂk(qﬂ+nA7wn+nwn)r wy < my(k, A4,q), n=0,1,..,
then

mn(k’A’ q'n)\o and 'wngmn(k!A7Qn)! n =071_1°"9

and consequently, w, 0 (if w,,, < w,).
Proof. Let u, be a solution of the equation

u = fr(qg+d, A, u, v);

then u, > f,(q, 4, %, v) and w, > d.
Putting

Uppr = Pr(q, 4, u,,v), n=0,1,...,
we obtain by induction
Upp) S Upy AL U, n=0,1,..
If n — oo, we obtain

U, \m,(k, 4,q), d<myk,A4,q).

Annales Polonici Mathematicl XXIV 9
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Now we can prove that
My, (k, 4, q,)<m,(k, A,q,)), n=20,1,...,
and if n — oo, we obtain m,(k, 4, ¢,)\0.
The next assertions of Lemma 7 are obvious.

2. Definition of the space E. We introduce
AssumprioN H, (see [4], [2]). R is an abstract space such that

1° for some sequences {z,},z,eR,n =0,1, ..., there exists a uni-
quely determined limit lim z, = x, < R; lim x, 1s invariant with respect

n—00 N=>00

to the change of a finite number of elements of {z,} (the relation lima, = =

n—oo

will also be written as z, — z);
2°if x, =seR,n =0,1,..., then limz, = s;

3° the function g(z,y) is defined on the product R X R and has
the following properties:

(a) o(z,y) <G,
() ¢lz,y) =0 iff z =y,
(c) for any z,y,zeR
oz, y) < o(x,2)+0(y,2);
4° for any 2*e<R and beG@ the sphere

S(x*b) =[x:2eR, p(x, 2*) < b]
is a closed set;

5° the space R is complete in the following sense : if ¢, eG, 7 = 0,1, ...
eeey 6,0 and for z,eR,n =0,1,..., the Cauchy condition

0@y Tpim) <Gy mym=0,1,...,
is satisfied, then there exists a limit yeR of the sequence {z,}.
AssUMPTION H, (see [2], [4]). 1° f: S(z* b) > R, 2*cR, beA;
2° for any z,yeS(z* b)
e(f(@), f(v) < ale(z, ¥)),

where the function a(u) satisfies Assumption H,, and b+ b £ 2bed;
3° there exists a ged such that

elz* f(a*)) <qg and g+a(b)<b.

AssumprioN H. 1° f,: S(«* b)x8(2*b) >R, n =0,1,..., z*R,
bed;
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2° for any x,y,s,teS(x* b), n =0,1, ..., we have
Q(fn(m’ Y)s fals, t)) < An(@(a’a 8), o(¥y, t))’

where the function 4,(u, v) satisfies 1°-3° of Assumption H, 2bed;

3° for any wu,ve[0, 2b] we have 4, (u, v) < A(u,v), where the func-
tion A (u,v) satisfies Assumption Hj;

4° there exists a qe4 such that for any » =0, 1, ...,
ole* fu(@*, @) < g and  g+4(b,b)<b.
AssumpTioN H,. 1° f,: RXR - R, n =0,1,...;
2° for any ,y,s,teR, n =0,1,..., we have
o(fal@, u), fuls, 1)) < A,(0(x, 8), 0(y, t),

where the function A, (u, v) satisfies 1°-3° of Assumption H, with 4 = G;

3° for any u,veG we have A, (u,v) < A(u,v), where the function
A (u, v) satisfies Assumption H,; with 4 = G

4° for any qe¢@ there exists a maximal solution of the equation
% = fi(q, 4, u, u),
where f,(q, A, u,v) is defined in Assumption Hj.

3. Generalized-approximate interations, the local theorem. We for-
mulate the following

THEOREM 1 (see [2], [1], [4]). If Assumption Hy is fulfilled, then
there exists in S(x*, b) a unique solution Z of equation (1) and limz, = Z,
n—>00
where x, = x*, 2, = f(%,), n =0,1, ...

Moreover,
o(2,, Z) < a,(d), n=0,1,...,

where ay(b) = b, a,,,(b) = ala,(d)), » =0,1, ...
LeEMMA 8. If Assumption Hg is fulfilled, then

g(fn.i(m,y),m*) <b for z,yeS8(x*b), i =1,2,...,k,n =0,1,...
Proof. Indeed, for i =1, n =0,1,..., we have
o(fur(®, ), 2*) < e(ful®, ¥), fula®, %)+ o(fula®, 2*), 2*)
< A,(e(@, @), o(y, o)+ ¢ < 4(b, b)+g<b.
Further, if we suppose that’

o(far(@ 9), %) <D,
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then

Q(.fn,r+1(a’1 ¥), m‘) Q(fn(my Jorl®@, ‘!I)),fn(m*, m‘))+ Q(fn(m‘i x*), m')

<
< A,fo(@, 8*), o(fnr(@, ¥), o*))+ 4 < A(b, )+ < b.

Now we can formulate the following

THEOREM 2. If

1° f: 8(=* b) > R,

2° Assumption Hy is fulfilled,

3° o(fulx, 2), f(@) < 5, (#) 0, xS (2%, b), &(z) < g, then there exists
in S(z* b) a unique solution T of equation (1). The sequence {y,} 18 well-
defined by relation (2), and if o(y,, %) < b, then y, > .

Moreover,
(7) Q(ymi)gmn(kiAabyan(E))r n =0’11°--1
where m,(k, A, c,d) is defined in Lemma 6, and

(8) e(¥n, 7) < me(vn_l.;)(kr 4,,b, en(f)),
where m,(k, B, c, d) is defined in Lemma 5.

Proof. In paper [2] it is proved that Assumption H, with a(u)
= A (%, w) holds true, and consequently there exists a unique solution %
of equation (1) (see Theorem 1).

Now we prove that y, exists and y,eS8(zx*b), n =0,1,... Put

Yt = far(Yns ), Yo =%, veS(z*b), k=>1,5=0,1,...

Because v, yheS(2* b); by Lemma 8 we state, y5eS(2* d),
§=0,1,..., le.

e¥n, #*)<b, 8=0,1,...

Further, we obtain by induction

Q(fn,k(mr ¥)y fon(2, 'w)) < .Bk(07 4, 0(z,2), 0y, 'w))7 @y Y,y 2, welS (2% b).

Set )

vo(d) = b, yi(d) =ﬂ,,(0,A,y,-_1(b),0), t=1,2,..

then ,(b)\ 0.

Now we can prove by induction

oWny Yn') S ys(b), 8,7 =0,1,...

Hence, if » - o0, we obtain y} —v,, where ¥, is a unique solution

of the equation

Y =lary,v), oveS(z* D).
and y,eS8(z* b).
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Now we show that for x,yeS(z* b)

o(fur(®,9), B) < Bilen(®), Apy 0(2, Z), (¥, %)), = =0,1,...
In fact, we have
Q(.fn,l(w7 ), E) < Q(fn(wy ¥), falZ, E))'l‘ Q(fn(51 5)7f(5))
< A,lo(w, %), o(y, 7))+ £,(Z)

= lgl(en(f)’ 4,, ez, Z), 0¥, 5))’
and if

o(fo,r (@, ¥), B) < Brlen(@), 4n, 0(@, 7), 0(y, ),
then
9(fn,r+1($7 Y), 5) < Q(fn(wifn.r(a’; ?l))ffn(fy 5))'*" 9(fn(5;5)7f(§))
< A,(e(@, 3), o(for(@, ¥), F)+ 6, (2)
< Brialen(@), 4, 0(@, 7), 0ly, 7).
Now we see that
0 Wnr B) = efnxWns Yn-1)s B < Belea(Z); 4py € (Yn» Z), eYn—r, )
< ﬂk(sn(i)’ A,y 0(Yny X))y 0(Yp1s 5))'
Putting o(y,, ) = d,, < b, we have
d, < Pr(en(Z), A, dy, dyy), n=1,2,...
By Lemma 6
e(Yn, T) < 'm’n(k’ A,b, sn(:i))\O,

and, consequently, y, — Z.
We have estimation (8) from Lemma 5.

Remark 2. Theorem 2 [2] shows that by Assumption H; and
additional conditions, the sequence {z,} (defined in that assumption of
this theorem) is convergent to , and the estimation

9(5’u75)<""n(3.)7 n=0,1,...,

holds true, where &,\0, & <¢q, 2(e*) =b, 2,,,(c*) = en+a(z,(e*),
n=20,1,...

If the assumptions of Theorem 2 are fulfilled, and a(u) = A (u, b),
ue[0, b], then

0(Yn, T) < m”(k, A,b, “:n(f)) K2,(e)y, m=0,1,... (e g?‘*‘37;(2'}))
In fact, we have mg(k, A, b, &(Z)) = b = z,(¢), and if
ma("’ A’ br 30(5)) g zs(s) 12
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then
My (ky A, by 60y, (F))
= Bilessr (®)y Ay mopy(ky A,y b, 00, (F)), mylk, A, b, £,()))
< ‘Bk(ss(‘_ﬁ)a A, myk, A,Db, &, (Z)), myk, 4, b, Gs(f)))
< Brlea(®), 4, 2, (), 24(8)) < £(B)FA(2(0), B) = 2544 (e).
Remark 3. If

fn,i(yyz) =fi(z), 1=1,2,..,F,
where

f1(z) = f(@), zeS(x* b),
fi(x) =f(fi_;(£0)), reS(x* b), ¢t =2,3,...,k,

then ¢,(z) =0, » =0,1,... Moreover, if A(u, v) = a(»), u,ve[0, d],
then for the resulting sequence {y,} we have

Yn > Ty Yp =Tpyy k=1,nm=0,1,...,
and
0(Yp, T) < m,(k, 4,b,0) = a,,(b), k>1,» =0,1,...,

where {,}, {a,(b)} are defined in Theorem 1. If we put
d,(b) = a,.b), k=1,n=0,1,...,
then Theorem 2 gives the identical estimations as those pointed out in
Theorem 1.
Remark 4. If Assumptions H; and H, are fulfilled, then assump-
tion 3° in Theorem 2 can be replaced by
Q(fn.k(ym ?/n—l):fk(?/)) Kep 20, g<q,k=21,n=1,2,...,
and if o(y,, ¥) < b, then
eWn, ) <m(k, b, )0, 1ie. y,>7,
where m(k, b, q) is defined in Lemma 2.
Indeed, we have
Q(y'ni 5) < Q(yn7fk(yn))+ Q(fk(yu%f(z)) < 8n+ak(@(yn’ E))?
and the next assertions of the remark are obvious.
4. Genperalized-approximate iterations, the non-local theorem. Now-
we can formulate a theorem having a non-local character.
THEOREM 3. If
1° f: R > R,
2° Assumption H, is fulfilled,
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3° olfal®@, @), f(@)) < £,(®)NO,  o(f,(@* @*), #*) < &(x), then there
erists a unique solution Z of equation (1).

The sequence {y,} is well-defined by relation (2), where z* is an arbi-
trarily fiwved element of R, and y, — 7.

Moreover,

e(Yny T) < m,,"(k, 4, En(ﬁ))v 0(Y,, T) < mo(un_l,a_v)(k’ 4,, en(:?))’

where m,(k, A, q) and m,(k, A, q) are defined in Lemma 7.
Proof. We will prove that equation (1) has in R a unique solution.

If z is a solution of equation (1), then
(9) Q($’w‘)<ﬁk(£n(m)+Q7A7 ez, z*), o(z, w’));
where o(f,(2* #*), %) < g < &(2).

Indeed, we have

0@, 2% < o(f(@), f (@, @)+ o(f(@, 2), £, (@*, 2) - o(f, (a% &%), 2*)
< & (@) + 4, 0 (2, 2*), o(@, %)) +7
< Bulen(@)+ 4, 4, o, 3%), (@, 3%),
and if
o(@, 2*) < Br(en(2) 4+, 4, o(x, 2%, e(x, 2%),
then
o(@, #*) < &, (#)+§+A{e(z, 2*), (@, *))
< (@) +7+A(o(@, 2*), B(e, @)+, 4, (@, 2%), o(@, a*)))
= Brlen(®)+7, 4, o(2, 2*), o(w, 2%).
Now, if » — oo, then from (9) and Lemma 7 we have

e(z, z*) < ﬂk(m A, o(x,z%), o(z, w*))a
ez, v*y<m(k, 4,7) < m(ka 4, 30(“’))7

where

m(k, A, &(x)) = Bifeo(@), A, m(ky A, &(x)), m(k, 4, e(x)))
= Buld, A, mlk, A, &(@), m(k, 4, &(x))).

This means that all solutions of equation (1) are in the sphere
8 (a;"‘, m(k, 4, eo(m))). But in this sphere the assumptions of Theorem 1
(with a(u) = 4 (u, w)) are fulfilled, and therefore there exists only one
solution of equation (1) in the space R. The sequence {y,} is well-defined
by relation (2) (see Theorem 2).
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Putting %, = o(y,, %), n =0,1,..., we have
uy = 0(Yo, *) = o(2*, T) < m(k, 4, 50(5)) £ mo(k, 4, 50(5))7
0¥y, T) = Q(fn,k(ym Yn-1) 5) < ﬂk(%(i)a A, 0(Yny T)y 0(Yn—1» 5))1
ungﬂk(sn(i)aliaunaura;l)’ n=1,2,...
From Lemma 7 we obtain

e(yn’ E) < mn(k’ A’ en(i))\o’

and consequently y, — Z.

Remark 5. If
fn.i(a:"’ y) =fi(a71 y);

then we get Theorem 5.1 [1], and if

fn,k(m7 y) = fn(w) Y)

we have Theorem 8 [2].

Ry
(2]
(3]
(4]
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