METRIC PROPERTIES OF SOME PLANAR SETS

 \mathbf{BY}

ROBERT KAUFMAN (URBANA, ILL.)

The graph of a continuous function defined on a linear interval is a planar set of Lebesgue measure 0. In this note we prove a theorem about differentiable mappings on certain subsets of the plane, and derive from it the following statement:

THEOREM 1. Let h be a continuous increasing function on $(0, +\infty)$ and let

$$\lim_{t\to 0+}h(t)t^{-1}=\infty.$$

Then there is a continuous functions f on [0, 1], and a Baire probability measure μ concentrated on the graph of f, so that $\mu(E) \ll h^2(\operatorname{diam} E)$ for open sets E.

Theorem 1 answers a question proposed by Ralph Alexander. The proof stated here illustrates a method in abstract analysis; quite possibly a more "elementary" argument exists, but the details would be difficult to execute. The method is that of [4]; see also [1], [2] and [5].

1. It is convenient to write $x \cdot y$ for the scalar product in R^2 , and $e(u) = e^{2\pi i u}$ for real numbers u.

A compact set F in R^2 is called a *Dirichlet set* [2] if there exist two sequences (X_n) , (Y_n) in R^2 so that

- (i) $\lim ||X_n|| = +\infty$, $\lim ||Y_n|| = +\infty$,
- (ii) $||X_n|| \leq ||Y_n|| < C||X_n||$ for some constant C,
- (iii) $|X_n \cdot Y_n| \leqslant (1-\delta) ||X_n|| \cdot ||Y_n||$ for some $\delta > 0$,
- (iv) $\lim e(X_n \cdot x) = 1$, $\lim e(Y_n \cdot x) = 1$ uniformly with respect to x in F.
- 2. The theorem on transformations of planar Dirichlet sets—from which Theorem 1 will be easily derived—relates to a Banach space of differentiable functions. Let C^1 be the space of real continuously differentiable functions on R^2 with finite norm:

$$||\varphi|| = \sup |\varphi| + \sup ||\operatorname{grad} \varphi||.$$

THEOREM 2. Let φ_0 be an element of C^1 and $I(\varphi_0)$ be the subset of C^1 defined by

$$\psi \in C^1$$
, $\operatorname{grad}(\psi - \varphi_0) = 0$ on F .

Then $I(\varphi_0)$ contains an element ψ_0 that is 1-1 on F; indeed, the elements ψ_0 are C^1 -dense in $I(\varphi_0)$.

Proof. Let (ε_n) be a sequence decreasing to 0 so that

$$|e(X_n \cdot x) - 1| < \varepsilon_n, \quad |e(Y_n \cdot x) - 1| < \varepsilon_n \quad \text{for all } x \text{ in } F.$$

Then F is contained in the union of cells of the following type:

$$(Q_n(u,v))$$
 $x \in \mathbb{R}^2$, $|X_n \cdot x - u| < \varepsilon_n$, $|Y_n \cdot x - v| < \varepsilon_n$.

Here (u, v) is a pair of integers.

For large n the cells Q_n have diameters $\ll ||X_n||^{-1}\varepsilon_n$, by virtue of (ii) and (iii), and have mutual distances $\gg ||X_n||^{-1}$.

For each pair (F_1, F_2) of disjoint closed subsets of F, let

$$N(F_1, F_2) = \{ \psi \in I(\varphi_0) \colon \psi(F_1) \cap \psi(F_2) \neq \emptyset \}.$$

Then $N(F_1, F_2)$ is closed; as soon as we have proved that each set $N(F_1, F_2)$ is meager in $I(\varphi_0)$, Theorem 2 then follows by an argument of countability.

Let n be so large that no cell Q_n meets both F_1 and F_2 . For each integer pair we define a number r(u, v) as follows: when $Q_n(u, v)$ meets F_1 , r(u, v) is the *smallest* real number r such that $\varphi_0(Q_n(u, v)) + r$ contains a number of the form $2w ||X_n||^{-1} \varepsilon_n^{1/2}$, $w \in \mathbb{Z}$. When $Q_n(u, v)$ meets F_2 , we consider numbers of the form $(2w+1) ||X_n||^{-1} \varepsilon_n^{1/2}$; for all other cells, r(u, v) = 0. In every case $|r| \leq ||X_n||^{-1} \varepsilon_n^{1/2}$.

Observe that the transforms $\varphi_0(Q_n(u,v))$ have diameters $\ll ||\varphi_0|| ||X_n||^{-1}\varepsilon_n$, so that for large n the sets G_i defined for i=1,2 by

$$G_i = \bigcup \varphi_0(Q_n(u, v)) + r(u, v) : Q_n(u, v) \cap F_i \neq \emptyset$$

are disjoint, and have distance $\gg ||X_n||^{-1} \varepsilon_n^{1/2}$.

Let d_n be the common diameter of all the cells Q_n and let $P_n(u, v)$ be the ball of radius $4d_n$ and the same center as $Q_n(u, v)$. Define $r_1 = r(u, v)$ on $P_n(u, v)$; then for all x and x' in the domain of r_1 ,

$$|r_1(x)-r_1(x')| \ll \varepsilon_n^{1/2} ||x-x'||.$$

By a well-known technique, r_1 can be extended to a function r_2 on \mathbb{R}^2 such that

$$\sup |r_2| = \sup |r_1| \leqslant ||X_n||^{-1} \varepsilon_n^{1/2},$$

$$|r_2(x) - r_2(x')| \leqslant \varepsilon_n^{1/2} ||x - x'||.$$

Define finally

$$r_3(x) = \pi^{-1} d_n^{-2} \int_{|y| < d_n} r_3(x-y) dy.$$

Then $r_3 \in C^1$ and in this space has norm $\leqslant \varepsilon_n^{1/2}$; $r_3 = r$ on $\bigcup P_n$ so that grad $r_3 = 0$ on F; and $\varphi_0 + r_3 \notin N(F_1, F_2)$. This proves our theorem.

Choosing an element φ_0 of C^1 so that $\varphi_0(x_1, x_2) = x_1$ on an open square enclosing F, we obtain

COROLLARY. There exists a continuously differentiable function ψ on \mathbb{R}^2 , with $\operatorname{grad}(\psi - \varphi_0) = 0$ on F and $\|\operatorname{grad}(\psi - \varphi_0)\| < \frac{1}{2}$ in \mathbb{R}^2 , that is 1-1 on F.

Observe then that the mapping of R^2 onto R^2 defined by

$$H(x_1, x_2) \equiv (\psi(x_1, x_2), x_2)$$

has Jacobian matrix everywhere non-singular. Thus the mapping

$$\psi(x_1, x_2) \to x_2, \quad (x_1, x_2) \in F,$$

on a compact subset of R, has the graph H(F).

3. To prove Theorem 1, let us suppose that there is a measure μ of the required kind concentrated on a Dirichlet set F, and that H is the mapping of the last paragraph. Then the measure $\mu^+ = \mu \circ H^{-1}$, defined by

$$\mu^+(E) = \mu(H^{-1}(E))$$
 for open sets E ,

has the property imposed in μ , while $\mu^+(H(F)) = \mu^+(R^2) = 1$.

To complete the argument we must construct a suitable measure μ on a Dirichlet set F. This is rather easy by standard techniques in descriptive set theory [3]. We have only to choose a sequence ε_k tending to 0 sufficiently slowly, and a sequence n_k of integers increasing sufficiently rapidly, and define F by the system of inequalities

$$0 \leqslant x_1, \ x_2 \leqslant 1, \quad |e(n_k x_1) - 1| < \varepsilon_k, \quad |e(n_k x_2) - 1| < \varepsilon_k.$$

REFERENCES

- [1] J.-P. Kahane, Sur les rearrangements de fonctions de la classe A, Studia Mathematica 37 (1968), p. 285 287.
- [2] Sur les ensembles tangents par translation, Comptes rendus Hébdomadaires des Séances de l'Académie des Sciences (Paris) 267 (1968), p. 437 439.
- [3] and R. Salem, Ensembles parfaits et series trigonométriques, Paris 1963.
- [4] R. Kaufman, A functional method for linear sets, Israel Journal of Mathematics 5 (1967), p. 185 187.

- [5] I. Wik, Some examples of sets with linear independence, Arkiv för Matematik 5 (1964), p. 207 214.
- [6] A. S. Besicovitch and H. D. Ursell, Sets of fractional dimensions (V): On dimensional numbers of some continuous curves, Journal of the London Mathematical Society 12 (1937), p. 18-25.

Reçu par la Rédaction le 16. 3. 1970.