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Maximal and minimal solutions
and comparison results for differential equations
in abstract cones
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Abstract. Employing the properties of abstract cones and using the Kuratowski
measure of non-compactness of a set, existence of extremal solutions of differential
equations in a Banach space has been established. On the basis of these results, an
abstract comparison theorem is proved and as an application of the comparison
principle a general uniqueness theorem is considered.

1. Introduction. As is well known, an important technique in the
theory of differential equations is concerned with estimating a funection
satisfying a differential inequality by means of the extremal solutions
of the corresponding differential equation. This comparison principle has
been widely employed in studying the qualitative theory of differential
equations (see [3]).

If we desire to develop a similar comparison result in abstract spaces
we must consider cones. These results could be of great value in appli-
cations to the theory of differential equations in abstract spaces. First,
we must consider existence results for maximal and minimal solutions
in cones which can then be ufilized to prove comparison results. This
approach would unify various comparison theorems for scalar, finite,
and infinite systems of differential equations. Naturally the notion of
quasi-monotone functions must be introduced for abstract spaces.

In this paper, employing the properties of abstract cones and the
Kuratowski measure of non-compactness of a set, we prove existence of
extremal solutions, discuss comparison theorems and, as an application
of the comparison technique, consider a general uniqueness theorem.

2. Preliminary results and definitions. Let B denote a real Banach
space with norm |-||. A cone, K, is a proper subset of B such that if v,
we K, e R with 2> 0, then v+ w, Av € K. Throughout this paper we
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will consider a closed cone @ and its interior P (P = Q°). These cones
induce orderings on B defined by

r<y ¥ y—2xe@,
and
r<<y if y—=xzelP.
The following lemma states some fundamental properties of such
cones (see [1]).

LEMMA 1. Let @ be a closed cone and P an open cone such that P = Q°.
Then

(11) =z<vy, y<=z implies v < z;
12) o<y, z<w itmplies x+2<<y+w;
1.3) =,<y, for each n and z,—x, y,—>y implies © < y;
(1.4) x P implies there exists 1 € R such that
y < Mlyl)a for all y e B—{0};
(1.5) z<y and x &y implies y—x € 3(Q) = d(P), where for any set A,
0(A) denotes the boundary of A.

Let P* be the set of all continuous linear functionals, ¢, on B such
that ¢(z) > 0 for all 2 € P, and let Q* be the set of all continuous linear
functionals, ¢, on B such that -e¢(z) > 0 for all # € Q. A function f from B
to B is said to be quasi-monotone if z < y and ¢(x) = ¢(y) for some ¢ € P¥,
then ¢(f(»)) < ¢(f(y)). This definition of quasi-monotone as well as the
proof of the following basic result are given in [6].

THEOREM 2. Let @ be a closed cone and P an open cone such thai
P =Q°. Assume that

(21) wu,veC [[to’ ty+al, Blv

(2.2) feC|lty, ty+a]x B, B] and f is quasi-monotone with respect to P
for each t;

(2.3)  Dru()—f(t, u(t) < Do) —f(t, v(t)) for all te[ty,t,+al, where
DFu(t) = E%[u(t—i—h)—u(t)];
(2.4)  u(ty) < v(t,).
Then u(t) < v(t) for all t € [t,, t,+a].

‘ Let a denote the Kuratowski measure of non-compactness (see [2]).
We list below some fundamental properties of ¢ which we will need

(see [2], [4]).
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LEMMA 3. Let 8 and T be bounded subsets of a Banach space, B, and
{a,} 0, and {b,}2_, be bounded sequences in B. Then

(3.1) a(8+T)< a(8)+a(T), where S+T = {s+t|se S and t e T};
(3.2)  a(A8) = |A|a(8) for any scalar 1;

(33)  alfade) —a(B)r) < a({a,—b),);

(34) a(8) =0 iff § is compact;

(3.8) if sl e for all s €8, then a(8) < 2e.

3. Existence of extremal solutions. We are now in a position to prove
existence of maximal and minimal solutions for differential equations in
abstract spaces. These results generalize in a natural way the corresponding
results in finite dimensional spaces (see [3], [5]).

THEOREM 4. Let Q be a closed cone and P an open cone such that P = Q°.
Assume that

{4.1) feC[[t(,,to—}-a,]xB, B], where f is quasi-monotone with respec
to P for each t;

(4.2) [ is uniformly continuous on [t,, t,+a] X {x B] e — x|l < b}, thust
we may assume a and b are such that
b
ifE, o)< M =; on [toato+a]x{w EBIHW"‘mongb};

(4.3) geC|lty, to+a]x RY, R*| with g(t,0) =0, and the system u’
= g(t, u), u(ty) =0 has as its only solution u = 0;

(4.4)  a({z+hf(t, o)|w e 8Y)—a(8) < hg(t, a(8)) for h>0, 8 bounded,
and t € [y, 1o+ a]l.
Then there exists a maximal solution and a minimal solution of @'
= f(t, x), 2(t) = xo on the interval [1,,t,+a/2].

Proof. We will prove the existence of a maximal solution noting
a similar proof yields existence of a minimal solution. Let y, € P such
that ||y, = min{b/2, b/a}. For each positive integer n consider the system

1 1
(4.5) z' = f(t, w)-i—;?/o, z(ty) = mo"'?{yu-

Applying Theorem 2 in [4] we have existence of a solution z,(?) of (4.5)
for each n and also a solution «(f) of

(4.6) z’ =f(t7 w); w(to) = @gy

where all solutions ‘exist on [ty to-a/2].
Moreover, |x,(t)—,/ < b and [z(t) —x,| < b for all t €[4, +a/2]
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By (4.2) and the choice of y, we have

b 1 b b
— - <2— =2M
n a a

! 1
}%f(tym)‘i";b‘yo} <

1
< If (¢, o)l + HW Yo

on [ty, to+a] X S, (2,). For € > 0 let 8 = min{e, ¢/2).
It t,, 1, € [ty, t,+a/2] such that |, —1,] < &, then

iy
| 1
ot =yt = | [ (10, 20(60) + 0] s
{ i
1t2 1 l ‘
< 8, 2, (8)) + —y,l ds
:.f o, (6] + - vo)ds
te
, < f2Mds‘ — oMt —1,] < e
t

Thus, {z,(f)}s~, i8 equicontinuous on [¢,,t,+a/2].

For each t € [t,, t,+a/2] define m(t) = a({z,(!)};~,). The continuity
of m(t) on [i,,%,+a/2] follows easily from the properties of a and the
equicontinuity of {z,(?)}5,. Now

n=1°

(4.7) m(ty) = a({wn(to)}fﬂ) =a ({w°+%y0} 1) =0

L= <]
since (x,-+ —fyo} converges to z,.
n n=1

For A > 0 and each n we can write

(4.8) @, (8 + k) —x, (t) = Rf(t, @, (2) +he, (R),
where
(4.9) lim a({en(h)},‘f:l) = 0.

ot -

To see this, let ¢ > 0. By the uniform continuity of f there exists 6 > 0
such that (t;, ¥1)y (f2, ¥2) € [Loy o+ a/2] X 8p(xo) and [t —o| +lly, — .l < &
implies |[f(¢,, ¥,) —f (5, ¥2)ll < &. By the equicontinuity of {xz,(f)}n., there
exists y, where 0 < ¥ << §/2 and such that t,, ¢, € [o, I+ a/2] and [{; —1,
< 6 implies |z, (¢,) —=, (t,)|| < é/2 for each n. Thus, if h<y and ¢, t+5
€[ty to+a/2] we have

W ()| = (|, (& + B) — , (8) — RS (¢, ,, (1))
t+h
= I (s, Ba@) = 1(t, wu®)] ds]
¢

f+h
<f eds = eh  for each n.
4
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Hence, |¢,(h)|| < & for each n and by (3:5) we have a({e,(k)}>.,) < 2e.
Now & was arbitrary and so hm a({sn(h )}2,) =o.
Using (4.8), (4.4), and (4. 9) we have
—_— hY — - oo _ )
Drm) = fgm MR ) g a(@a ) —a (@0

B0t h h0+ h
- a({@, () + R (2, 2, () + b ({eu (B)}5n0)) — @ ({m, (O)}52)
s | h
< Tm [a(lfvn 1)+ Rf (2, 2, (1)) }}';1) — a({wn(t)}f-l)]+a.({h8n(h)}{'f=1)
ot h
< T hg(t a({w ()} e 1)) — ha({s (h)}n ,)
h—>0+ h—>0+

=g(t, m(t))+0.
Hence,
(4.10) Drm(t) < g(t,m(t) for tety, to+al2).

Using the Comparison Theorem (page 15 in [3]) and (4.10) we have
m(t) < r(t), where r(#) is the maximal solution of «’ = g(¢, u), u(t,) =0
but by (4.3). the only solution is the zero solution. Thus, m(f) =0 on
{ty, to +a/2] and so {z,(t)},~, is relatively compact for each ¢ € [t,, t,+a/2].

Applying the Ascoli Theorem we obtain a subsequence (for simplicity
of notation we will use the sequence itself) which converges uniformly to
a continuous function »(f) on [, {,+ a/2]. For each t € [¢,, t,+a/2]

¢
) = sa(t)+ [ 700, 2000+ -] 3.
)

Using uniform convergence and taking limits we obtain () = x,+
+ff(s, 7(s))ds, so r(f) is a solution of (4.6) on [y, t,+ a/2]. Let x(t) be
any solution of (4.6). Now,
1 '
o —f(t,2) = 0< —yy = af—[(t, 2,)
and
1
Z(ty) = Ty < Tp-+ ?yo = @, (t).

Applying Theorem 2 we have z(f) < =, (¢) for all ¢ €[4, {, -a/2] so =(t)
< lim «, (¢) = r(t) for all ¢t e[?,, t,+ a/2]. Thus, r(f) is the desired maximal

n—>o0

solution.
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4, Comparison results. Having the existence results for maximal
solutions at our disposal, it is easy to prove a general comparison result
for abstract spaces. Obviously such a result should and does contain
the well-known comparison theorems for scalar and vector cases (see [3]).
Also, this result includes a comparison theorem for infinite systems (see [5]).

THEOREM b.- Consider the system z' = f(1, x), x(t,) = 2, and suppose
the hypotheses of Theorem 4 are satisfied. If u e C[[to,to+a/2], B] such
that D_u < f(I, u) on [ty, to+a/2] and u(ly) < x,, then u(t) < r(t) for all
t € [ty, o+ a /2], where r(t) is the mazimal solution of ' = f(t, ), (t,) = ;.

Proof. Let z,(t) be as in the proof of Theorem 4. Notice u(ty) < z,
1
< @yt —Yo = @y (t) and D_w(t) —f(t u(®) <0< ;yo =, (1) — f (¢, %,(1))

for all ¢ € [y, t,+a/2]. By Theorem 2, u(?) < x,(t) for each » and for all
t e [ty, 1o+ a/2]. Thus, r(t) = limx,(?) > u(?) for all t e [t,, t,+a/2].

n—oo
Remark. Theorem' 5 is a broad generalization of the comparison
theorems. However, the more natural generalization which is useful in
applications is where the range of u is restricted to be in @. In this situa-
tion one can prove a general result which includes the Bellman—Gronwall
Lemma and its generalizations in finite dimensional spaces (see [3]).

THEOREM 6. Let Q be a closed cone and P an open cone such that P = Q°.
Assume

(6.1) wveC[B, B];

(6.2) g eC|lt, to+a]lx B, B such that g(t,u) is non-decreasing (with
respect to Q) in u for each t;

(6.3) there exists a maximal solution r(t, ty, u,) of

u’ '_g(t ), u(ty) = U, on [ty, ty+aj;
(6.4) () < v(te)+ fg(s, ))ds for t € [t, ty+al;

(6.5)  v(ty) < u(ty) = uo-
Then v(t) < u(t) on [t,, t0+a]

Proof. Let w(t) = v(t,)+ f_q(s, v(s))ds and note that w(t,) = v(t,)
< u(ty) = 4, and by (6.4) we have
(6.6) v(l) <w(t) for tell,y,t,+a]l.

Now, D_w(t) = g(t, »(?)) and so applying (6.2) we have D_w () = g(t, v(t))
< g(t, w(®) on [f,t,+a]. By Theorem 5 w(t)<r(t) on [ty,t,+a] and
combining this and (6.6) we obtain »(f) <7 (f) on [i,, t,+a].
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5. Application to uniqueness. In order to give an application of the
comparison result to obtain a general uniqueness theorem we need to
introduce the concept of a cone metric. Again, @ will be a closed cone
and P an open cone with P = @°, but we will require 0 € @ and if » € @ — {0},
then —u ¢ Q.

A function o: B x B—~Q satistying

e(z,y) =0 iff # =y,

e(w,y) = oly, ») for all #,y e B,
and
o(x,y)< e¢(x,2)+e(2,y) for all z,y,ze€ B,
is called a Q-metric. In addition, we will assume that
eeC[BxB, @],

oAz, y) = |Ale(®,y), where ieR,
and

o(e+2, y+2) = oz, 9).

These additional restrictions seem reasonable when usual metrics on R*
are considered.

THEOREM 7. Consider the sysiem
(7.1) o =ft,2), () = x,,

where f € C[[ty, t,+a] x {& € B||lw —u,]| < b}|. Assume that g € C|[t,,1,+a] X
X B, B],'g satisfies the hypotheses of Theorem 4, and w' = g(t, u), u(t,) = 0
has a unique solution, w = 0. If o(f(t, 2), f(t, v)) < g (%, o(, ¥)) for all (¢, ),
(t, 4) € [bos to+al X [z € B|lw — x|l < b}, then there is at most one solution
for (1.1) on [t,,t,+a/2].

Proof. Let z(t) and y(¢) be solutions of =’ = f(¢, z), #(¢,) = z, and
define m(t) = o(x(?), ¥(¢)) and note m(t) € Q. Using the properties of ¢
it is clear that m(?) is continuous and we obtain
m(t+h)—m(t) = ele(®) +hf(t, 2(t) +he, y () +hf (¢, y (1)) +he) —

—o(x(®), ¥(¥)

= o[z () —y (), Rf(t, y(O)) —1f (¢, (D)) + B (¢ —&)) —
—o(z(t), y (1))

< efe() =y (1), 0)+ o (0, Rf (¢, y (1) —hf (t, 2(8) + h(s—e)) —
—@ (w(t)a y(t))

= o(h(e—2), hf(t, ¥ (1) — hf(t, 2(1))

< o(k(e—%), 0)+¢(0, hf (¢, y(2) —Rf (¢, 2(2)))

= ho(e— ¢, 0)+ho(f(t, 2(t)), F(t, (1))
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Thus

Dtmit) < i eE=E 0 +he(f(t, 2(0), 1, y 1)
= hr—o0t ' h

=hlj_§_g(e—§, 0) +Ee(f(t, (1), f(t, y(0))

= o(f(t, (), f(t, y@)) < g(t, &z, y(1))
= g(t, m(t)).

Moreover, m(t,) = o(%(t), ¥(t)) =0 so by Theorem 5 we know m ()
<r(tty, 0) on [2,,%,+a/2], where r(i, t,, 0) is the maximal solution of
' = g(t, ), u(t,) = 0. However, the only solution of u’ = g(t, ), u(t;) = 0
is u = 0 80 m(t) < 0 on [¢,, t,+a/2] which means —m(¢) € Q. But m(t) €Q
and —m () € Q is possible only if m(t) = 0. Thus m(f) = 0 on [t,, t,+ a/2]
which implies z(t) = y(¢) on [t,, t,+a/2]
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