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1. Introduction. Throughout the paper graph will mean a finite
ordinary graph (i. e., a finite, undirected graph without loops and without
multiple edges). The paper presents a new approach to the problem of
the existence of Hamiltonian paths and Hamiltonian circuits in graphs.
An analogous problem concerning Eulerian chains and Eulerian closed
chains is treated in [1] in a chapter on chain coverings of edges. The paper
of Ore [20] gives rise to investigations of path coverings of vertices in
ordinary graphs. Here we give a number of sufficient conditions for an
ordinary graph to have a covering of vertices by a fixed number of paths
(or simple chains) and a study of interdependence of those conditions.
Most of known conditions for a graph to have a Hamiltonian eircuit. or
a Hamiltonian path are particular cases of those given below. Our weakest
condition corresponds to that of Las Vergnas [16].

2. Coverings of vertices in graphs. A set of subgraphs of a graph @
is said to be a covering of G (more precisely, a covering of vertices of G)
if the union of subgraphs in the set contains all vertices of G. For example,
a colouring of G is a covering of G by totally disconnected disjoint sub-
graphs and corresponds to a complete graph covering of the complementary
graph G of G. In what follows, each covering will contain only disjoint
connected subgraphs of a special kind and will be identified with their
union. Thus a covering of vertices of G will be identified with a spanning
subgraph (a partial graph [1] or a factor [11]) of G with components of
a special kind. For instance, a 1-factor of G (it may be identified with
a perfect matching in @) is an edge-graph covering of G; a 2-factor of G
is a circuit covering of G, the covering, being a (spanning) tree, is
important for applications (e. g., in telecommunication).

Throughout, R and Z will denote the set of real numbers and the
set of integers, respectively. We also assume (unless otherwise stated)

(2.1) n>8=>2p=0, n+s=3, k<n—-1, mn,8pkelZ.
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Hence n > 2. The symbol G, denotes an ordinary graph G with »n
vertices and we write G = G, if G contains exactly n vertices.

A path covering of vertices of @ is a covering by disjoint paths (trivial
or not). A path covering with s components (s > 1) is called shortly an
s-covering or, more precisely, a path s-covering. Thus a 1l-covering of @
is a Hamiltonian path of G. A Hamiltonian circuit of @ is said to be a
0-covering of G. (So one can interpret s as the number of additional edges
in a circuit (without new vertices) that contains the path s-covering.)
Many authors have given conditions for an ordinary graph to have a
0-covering, e. g., Dirac [7], Ore [20], Pésa [22], Erdos [8], Bondy [2],
Skupien-Wojda [26], Chvatal [6], Las Vergnas [15] and [16] (see also
Skupien [25]). Analogous conditions for a graph to have a 1-covering have
been also found. Our aim is to give general sufficient conditions for a graph

G, (with n vertices) to have a path s-covering, s =0,1,...,n—1. Each
of these conditions depends on the parameter s > 0. These conditions
(or analogous ones) were considered also for s = —q < 0 (cf. [1]-[6],

[9], [12]-[18], [21], [23], [26]) and were proved to ensure either high
connectivity or the existence of Hamiltonian chains (closed or open)
with extra properties.

“" As modifications of the conditions due to Erdos [8] and Ore [20],
pertinent to the existence of Hamiltonian chains (s = 0; 1), we obtain
two new conditions (see (5.6) and (5.8)), both ensuring the existence of
path s-coverings (0 << s<<n—1).

3. Definitions. The symbol : = will denote the equality on the strength
of a definition. Let V be a finite set of elements of the same type, e. g.,
V < R®. Let |V| be the cardinality of V and let #,(V) be the collection
of all unordered pairs {z, y}, #,ye V, ¢ # y. Then VNP,(V) = O and,
for any subset E of £,(V), the ordered pair G =<V, E) is said
to be a graph with the vertex set V(G) = V and the edge set E(G) = E.
Thus a graph may be identified with a simplicial complex of di-
mension < 1.

. We define two dyadic, irreflexive and symmetric relations in a graph
G= (V, E), the incidence and the adjacency, in the following manner.
Two elements u,, u,e VU E are incident in G if w,c u;¢ E and {3, j} = {1, 2}
(u; i1s a vertex and u; is an edge of G). Two elements u,, u,e VUE are
adjacent in G if either u,, u,e V and {u,, u,}e E or u,, u,e¢ E and there
is xe V such that v,Nnu, = {x}. So u, and u, are adjacent if , # u, and
there is an element in VU E to which u,, u, are both incident.

If » and y are two different vertices of a graph, then {z, y} will be
denoted by xy or yxr. The number d(r) = d(x, @) of vertices adjacent
in G to a vertex xz¢ V(@) is called the degree of x in G. The minimal degree
of vertices of @ is denoted by 4(G).
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The graph (V, 2,(V)> is complete and is denoted by K or by K,
if |V| = n. The graph K, := {0,9) is called empty. The complementary
graph @ of @ = (V, E) is defined to be the graph (V,2,(V)\E). The
complementary graph K, of the complete graph K,, n > 0, is said to be
totally discomnected (possibly trivial if n =1). A graph H = (V,, E,)
is a subgraph of a graph G = (V, E), in symbols H< G, if V, < V and
E,cBE; if V, =V, then H (H< @) 1s a partial graph (spanning
subgraph) of G.

A chain of a graph G is an alternating sequence

¥
p= (Bgy €1y L1y 3y +.y €y Ty) = [@oy ... @] = p[@o, 2, ]

of vertices x,, #;, ..., z, and edges e, €,, ..., ¢, of @ such that all edges
e; are distinct and e; = x;_,x; for ¢ = 1, ..., n. The chain u is simple (and
open) if all vertices x; are different; it is closed (or it is a cycle) if zy = «,,
n > 3; and it is a simple closed chain (i. e., a simple cycle) if it is closed
and all vertices zy, #,, ..., x,_, (deleted z,) are different. An open [closed]
Eulerian chain of G is an open [closed] chain passing through all edges
of G. Similarly, an open [closed] Hamiltonian chain is a simple chain
[a cycle] containing all vertices of G.

Not only chains but also graphs which correspond to some of those
chains play an important part in graph theory. These graphs are
called paths and circuits. So by a path [a circuit] of G we mean a subgraph
consisting of all vertices and edges of a simple [simple closed] chain of G.
Thus a path is a graph isomorphic to a triangulation of a closed line in-
terval (possibly degenerate). Hence K, is a trivial (degenerate) path. A circuit
is isomorphic to a triangulation of a simple closed curve. A Hamiltonian
path and a Hamiltonian eircuit of a graph G are subgraphs corresponding
to suitable (open or closed, respectively) Hamiltonian chains of G. A graph
is Hamiltonian if it contains a Hamiltonian circuit (or a Hamiltonian
cycle).

To avoid confusion suppose that GV = (V,, E,> and G® = (V,, E,>
are subgraphs of a certain graph. Then G*) and G® are disjoint (or vertex-
-disjoint) if V,NnV, = @. Further, QVUG?: = (V,0UV,, E,UE,) is the
graph called the union of G and G®.

(8.1) If GW and G® are disjoint, we write G"xG® to denote the
following graph called the join of GV and G®:

GV%x@? : = (V,uV,, E,UE,VE,,>,
where E,,: = {xy:xeV, and ye V,} (cf. multiplication in [29],

operation x in [28], and operation x in [27]).
In particular, QUG = K, GxK, = G.
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4. Preliminary results. The following equivalence is obvious:

(4.1) @, has a path s-covering if and only if G,xK, is Hamiltonian.
More generally, G, has a path s-covering if and only if G, K, has
a path (s — p)-covering.

To formulate conditions sufficient for a graph to have a path s-
-covering, we need some definitions. For a number a, [a] is the greatest
integer which does not exceed a, and [*a] is the least integer not less
than a. Hence

(4.2) [a]<a<['a), [*a]l= —[—a].
Set
(43) palt)s =14 ("7, ) oy
(4.4) X =Kyt = [n_—;—_l] (so max{l—s, 0} < %),
(4.5) ky,: = max{1—s,0, k},
(4.6)

_ max )k, <t< x if b, <
(Dm(k): — qjm(ks); =|0 {(Pns( )l s I X } " ]_cs>x’l—c R
8 9 8 .

Now we will obtain more convenient expressions for @,,(k). It follows
from (4.3) that ¢,,(t) is the square trinomial of variable ¢,

q’ns(t) =g‘t2—(’"'—23—%)t+(n;3)+1’
whence, by (4.6),
¢ns(k) = max {q)ns(z}s)7 ‘pna(}‘)} if ks < x,

and .
(Pns(k)—¢ns(%) = g(”“k)(a—k),
where
—bs+1
" 681_— for odd n+s,
4.7 a=a,,:=132n—4s—1—-3x%) =
( ) Qg 35( ) n—5s+4 .
— otherwise.

Hence, by (4.4) and (2.1), we have

n—s—1 n—>5s+1 n-4-8—2 1
— R = — for odd n+s,
2 6 3 3
x—a = .
n—8—2 mn—5s+4 n+8—5H 1 )
~ — = > — —  otherwise.

2 6 3 i 3
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Thus [*a] < » if and only if n+s # 4. Further, a # » and [a] < .
Moreover, examining all the cases n —5s =+¢ (mod 6) (+ =0,1,...,5),

we obtain
. 4
[(a] = a+€ ’
— 2
[1‘_5:1_] fl—a<x if n—5s =2 (mod 6),
— 2
[1_568i_] = [a]< x otherwise.
Therefore,
(4.8) Dy, (k)
- = n—58+2 =
(pua(ks) if ks < T (Ol‘ ks < ans)’
=@ (k)= —bhs+2 n—s -
na( 8) (PM(H) if 3—6:{:— < ks < 92 (Ol‘ Upg < ks < xns))
0 ifk=’?:s>%, ke R,

(4.9) D, (k) = qne(x) if and only if x <k, = max{l—s, 0, k} < ,

where

n—8—2
’ =——— for n+s =4,

4
fa,,] = [a"3+€] for 4 £n+s> 3.

—bs+2 .
[L_;L]gxgx.

For integers k < (n—s)/2 we define the following multifunction:
{k,} if k, < a,
(4.11) T, (k): =|{a, x} itk =ac2,
{2} it k, > a.
Numerical values of this multifunction are not singletons only if
a = a,,is aninteger. By (4.7), it is the case if and only if n — 58 = ¢ (mod 6),
where either ¢+ = 2 or + = 5, and then a < x». Observe that if k > 7,,(k)
is a selection of the multifunction (4.11), then 7,,(k) = s (K,) (since (k,),
= k,) and, by (4.6) and (4.8), we obtain
‘Pns(fna(k)) if k<xkeZ,

(4.12) @, (k) = |
if k> x, ke R;

9 — Colloquium Mathematicum XXX.2
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moreover, if Z >k < %, then

(4.12%) D,.(k) = ¢,.(r) and >k if and only if e T, (k).
< 1—s, formula (4.12) can be simplified.

In the case 0 <s<<1 and %k
Indeed, by (4.5), (4.4) and (4.7),

k

l—-s=x2>a ifnt+s=3 ((0<s<1),
s 1—s<a otherwise.

Therefore, by (4.11) and (4.5), one can put z,,,(k) =1—sfor0 <s <1
and k¥ <1 —s. From (4.12) and (4.3) it follows that

(4.13) @, (k) = @, (1 —s) =(";1) +2—s fO0<s<1, k<1l—s.

Now, put

(4.14) @ (k): =

max (@, () +k—t|k<t<x} if k< x,
otherwise.

Analogously as above one obtains the following formula:

(4.15) @ps (k) = max{p,,(k);, Pps() +k—2} if k< 2,
. n—>58+6
Pas (R) it k<,
B — 5516
Pps(%) +E—2 if n—;—+<k<x.

In connection with the last formula note that if a : = (n —5s+6)/6,
then [a] < ». In fact, a < (n—8)/2 if and only if »+ s > 3. In accordance
with (2.1) this is not the case if and only if (n, s)e {{(2;1), (3;0>}, but
then [a] = (n—s8—1)/2 = ». On the other hand, if a < (n—s)/2, then
[a] < (n—s8)/2, and [a] < x.

5. Formulation of conditions. Let n, s, k be fixed numbers satisfying
(2.1) and let @, be a graph with »n vertices. Now we shall formulate certain
propositional functions (conditions) A{ (%), ¢ =1,2,...,11, each of
which associates with any specified graph @, a sentence AY)(k; @,). If
the parameter k is not involved, we write A" and A{Y)(Q@) instead of
AY (k) and 49 (k; @), respectively. A simplified version of A% (k) will be
denoted by A% (k); the simplification will consist in the deletion of an
unessential logical factor (logical component). Two conditions are equal
if they are identical.

(5.1)  AY(k) (condition of Erdos type): Each vertex of G, is of degree
not less than k and @, contains at least @,,(k) edges.
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Observe that k need not be an integer if k¥ > x, since then, by (4.6),
®,,(k) is 0. Thus the condition A{)((n —s)/2) is easily seen to be equiva-
lent to AQ([*(n—s)/2]) (cf. (4.2)).

If either £ < 0 or » < k < n—1, then one of the two logical factors
in AQ) (k) is unessential in the sense that either it is always satisfied or
can be deduced from the other. Omitting such a logical factor, one obtains
a simplified version A% (k) of AY (k). We quote two examples:

(5.2) AD((n—s)/2) (condition of Dirac type): Bach vertex of G, is of
degree > (n —8)/2;

~

(5.3)  AU)(0) (condition of the first Ore type): G, contains at least &, (0)
edges (cf. (4.8) and (4.13)).
The following implication holds true:
(5.4) AQ)(k; G,) implies that the minimal degree 6(G,) of vertices of @,
is mot less than max{2 —s, 0}.
In fact, it is trivial if either s >2 or £ >2—s. And if 0<s<1
k< 1—s, then, by (4.13), we have

’

D, (k) =(”;1)+2—s

which implies (5.4).

The following equivalence is easy to prove.

(5.5) Ift=kFk, =max{l—s,0,%k}, then AL (k;@G,) = AN (t;G,).

In fact, by (4.5) and (4.6), k¥ < k, and &,,(k) = &,,(k,), and so only
the implication = requires a proof. This implication, however, is evident
with the possible exception for k¥ < k,, k, > 0, but then s = 0 and k < ¥,
=1, and (5.4) applies. Thus (5.5) is proved.

Thus ASJ(1) can be simplified, and in view of (5.3) and (4.13), AY(1)

is identical with A{)(0):
AQ @) = 4%(0).
Here are the next conditions.
(5.6) AQ)(k): 6(@,) = kand G, contains at least @, (k) edges (see (4.14)).

(5.7) A (condition of the second Ore type): The sum of degrees of any
two non-adjacent vertices of G, is not less than a®, where

n—s—1 if §>2 and n—s is even
a(3) :a(3). = !
ns °

n—s8 otherwise.

In some cases a® can be diminished by 1. Namely, consider the
following condition dependent upon a number &, 0 < k< n:
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(6.8) AW (k): G, contains at least [*k] (0 < k < n) vertices of degree
n—1 and the sum of degrees of any two non-adjacent vertices
of @, is not less than a®, where

n—s—1 if s+k>1 and n—s is even,

o = d ) =ln—s otherwise

Sometimes A (k) can be easily simplified. We quote two examples:

A®(0): = A9

ns

8
vertices of degree n —1.

AY (nT—s) @, contains at least "
(5.9) AL (condition of Pésa type): For any te Z such that

n—s—1
max{l—s, 0} <t<»x =|—|,

2
the number of vertices of G, of degree at most ¢ is less than a® (1),
where
n+s+1 ) —s—1
t+1—+—s=—+——— 1ft=L—eZ,
2 2
a9 (1) = ap)(t): = "1
t+s if max {1—s,0} <t< —

The paper of Bondy [2] suggests certain reformulations of the con-
dition of Pésa type. Consider the following scheme of conditions dependent
upon propositional functions o) (r =6, 7, 8,9, 10):

(65.10) 2,(0¥)): For any arrangement of vertices x; of G,, if d(z,, G,)
< d(wy, G,) < ... < d(2,, G,), then o).

Specifying «{f) one can obtain reformulations A (r = 6, 7) of the

condition of Pdsa type (5.9). To do this, consider the following conditions:

Fe—1
(5.11,) A, G,)>i—s if max{l,s}<i<"*; -,
. n—s—1 .
(5.11;) d(z;,G,)<i1—s = d(x;, G,) > 5 if e {1,...,n},
— 1 1
(5.12) d(w,,an>>z_s(=-’”—si) it = M g

(n 4+ s must be odd).
If
(5.13) ! is the conjunction of (5.11,) and (5.12) for » = 6, 7,
then define
(5.14) AT = Q (o), r=6,T.
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Similarly, one can formulate the next three conditions.
(5.15)  A® (condition of Bondy type), AS) (condition of Skupien-Wojda
type) and ALY (condition of Chvdtal type):

A(n'ﬁ = Qn(w‘ﬂ), r =38,9,10,

where
o®:if 1<i<j<g<n, d(z,q,)<i—s, and d(z;, G, <j—s-1,
thend(z;, @,) +d(x;, G,) > n—s;
o) if 1<i<j<n and there exist x,ye V(G@,) such that
z #+Yy, wy¢B(G,), d=6)<d®,6,)<i1—s and d(y,G,)
<d(z;,q,) <j—s—1, then d(x;, G,)+d(z;, G,) = n—s;
o!9: for all ¢ such that max{l, s} < < (n+8)/2 there is either
d(z;,,G,) >1—8 or d(z,, ,_;, G,) =n—1.

(5.16) Remark. It is easily seen that for r =6, 7,8,9 and 10 the
condition A{") is equivalent to the following one:

Q) (ol)): There is an arrangement x,,Z,,...,x, of vertices x
of G, such that d(z,,@,) <d(z,,Q,) <...<d(x,,G,) and o).

(6.17) AU (condition of Las Vergnas type): There is an arrangement
Xyy Tgy ..., &, of vertices z; of G, such that, for all 4, j, if max {1, 8}
<I<j<N j=nts—i, dz,q,)<i—s, d(z;,q,) <j—s—1,
and z;x;¢ B(G@,), then d(;, @,)+d(z;,G,) > n—s.

6. Interdependence of conditions. Now we shall prove some relations
between the above conditions. A few implications are obvious and some
others are already proved for s = 0 or s = 1. For instance, Ore [20] proved
that, for s = 0,1, the condition of the first Ore type (5.3) implies the
condition of the second Ore type (5.7); Erdos proved [8] that his condition
A (k) (see (5.1)) with s = 0 implies the condition of Pésa AS) (see (5.9))
with 8 = 0. It is known (see Kronk [14] and Sachs [24]) that for s = 0
the condition of the second Ore type (5.7) is stronger (essentially stronger
for n > 5) than the condition of Pésa type (5.9). Bondy observed [2]
that the condition of Posa (5.9) with s = 0 is equivalent to the condition
A (see (5.14)) with s = 0. He formulated a new condition as an improve-
ment of that one. The condition A{) (see (5.15)) with s = 0, found by
Nash-Williams and Bondy (cf. Berge [1], p. 199), is just a refinement
of the original condition of Bondy [2]. The original condition of Skupien
and Wojda, formulated (with errata ()) in [26] for s < 0, was proved
to be equivalent for s = 0 to that of Bondy. Las Vergnas [16] formulated
his condition A{Y (see (5.17)) for s < 0 as a refinement for s = 0 of the
condition of Bondy type A (see (5.15)) with s = 0. Chvatal [6] proved

(!) The error was kindly pointed out to the authors by J. C. Bermond.
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ingeniously that his condition A(Y is weaker than that of Bondy type
(clearly for s = 0 only).

LEmMMA 1. FEach condition of Erdos type (5.1) implies a certain con-
dition (5.6); namely,
(6.1) if ky = 6(G) and G = G,, then AQ(k; G) implies AZ)(k,; G).

Proof. Let @ = G, satisty AQ(k). If 6(G) = %k, > x, then, by (4.14),
we have @),(k,) = 0. Hence @ clearly satisfies 4% (k,). And if 6(@) =k,
< x, then k < k, and, owing to (5.4), we have max{2—s, 0, k} < k, < x.
Therefore, by the definitions of @,,(k) and @,,(k), we obtain

(Dns(k) \/> ¢n (kl) > (D:s(kl)?
which completes the proof.
Remark. If k< max{2—s, 0}, then the condition AL (k) is self-
-contradictory.

In fact, there is no graph G with (@) = k < 0, so suppose that
0(G,) =k and 0<k <max{2—s, 0}. Hence

—1
B <k+("Y),
and two cases are possible:
Ik =0 and 0 <s<1;
II. k =1 and s = 0.
Owing to (4.15) and (4.3), in both cases

n—k—s

(D;:s(k) = ¢ns(k) =1 +( 2

)+(k+s)k,

whence
—1
|B(Gn)l < ¥+ ("2 ) < Dy, (k).

Hence also in the case 0 < k < max{2—s, 0} no G, satisfies the con-
dition 4% (k).

Now we prove the following proposition:

(6.2) If G =@, and either k <max{2—s, 0, a,,+1} or »,, <k <mn,
then AP (k; @) implies AL)(k; G).

Proof. By the Remark, implication (6.2) is true if ¥ < max{2 —s, 0}.
And if either max{l—s,0} <k < a,, or »,<k<m—1, then, by (4.5)
and (4.4), we have k, — k. Hence, by (4.8), (4.14) and (4.15), we obtain
d,, (k) = @), (k). This completes the proof.

LeMMA 2. Each condition (5.6) implies condition of Pdsa type (5.9), <. e.,

(6.3) if @ =@,, then A®(k; @) implies ASN(G).
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Proof. It suffices to consider the case 0 < k < ». Assume that AP (k; G)
is true for a graph G = G, and that there is an integer ¢, max{l —s, 0, k}
< t< %, such that G contains at least ¢+ s vertices of degree <i. By
A®)(k; @), we can assume that at least one of them is of degree k. There-
fore G contains at most (t+ s)t+ k—1¢ edges incident to our ¢+ s vertices
of degree < t. The number of the remaining edges of G does not exceed

(n—;—s), Thus, by (4.3) and (4.14), @ contains at most &,,(k)—1 edges,

a contradiction to A® (k; @). Therefore G satisfies A®). (As a matter of
fact, @ satisfies a condition stronger than A®).)

LeEMMA 3. Condition of the second Ore type (5.7) is equivalent to (5.8)
for k =0, 2. e,

(6.4) if G =@,, then AD(G) < A¥(0;G).

The proof is obvious.
LEMMA 4. Each condition (5.8) implies condition of Posa type (5.9), 1. e.,

(6.5) if G =@Q,, then AD(k; @) implies A®(Q).

Proof. Assume that A% (k; @) is true for a certain G = @, and that
there is an integer ¢, max {1—s, 0} <t< » = [(n—s—1)/2], such that G
contains at least ¢+ s vertices of degree <f. Let them be the vertices
D1y Byy ...y Byys- Since 2t < al?) (k), all these vertices are mutually adjacent
(if ¢ +s > 2), and each of them is adjacent to at least [*k] other vertices.
Hence each of these vertices is of degree > ¢+ s—1+k (also in the case
t+s < 2) and, by the assumption, of degree < ¢, i. e.,

(6.6) t+s—1+k<d(wm,@)<t, i=1,...,t+s.

This is a contradiction if s + % > 1. Now, it suffices to consider two
cases: either s =0 and 0<k<lors =1and k =0.

Let the remaining vertices of @ be 2;,7 =t+s+1,...,n. If s = 0 and
0 < k < 1, then, by (6.6), they contain at most ¢ vertices (1 vertex if £ = 1)
each of which is adjacent to a vertex from ,,w,,...,%., =%.
Since 2t < n, the vertices «,, x,,...,,, together with those adjacent
to them, do not exhaust all the vertices of G. Therefore there is a vertex
of G, say w,, different from and non-adjacent to z,, x,, ..., ;. Then

d(z,, ) +d(z,,Gd)<t+(n—1t—-1) <n,

contrary to (5.8) with s =0and 0 < k< 1. And if s = 1 and k¥ = 0, then,
by (6.6), d(x;, @) =tfori =1,2,...,t+1and z,2;¢ E(G) fori < t+1 <j.
Thus

d(x,, @) +d (2, @) <t+(n—1—2) <n—1,
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a contradiction to (5.8) for s =1 and ¥ = 0. This completes the proof

of (6.5).
Now consider the condition
(6.7) V(Gn) {wl’ Loy . ’wn} and d(wu d(wzr d(wyn G n)

In what follows we assume (Wlthout any loss of genera.hty) that

(6.8) if a graph @ = G, satisfies one of the conditions A (r =5, 6, ...
, 10), then (6.7) and o) hold true.

Thus in order to prove the implication AT = A®@ for 5 <7, o < 10
and ¢ > 6, it suffices to show that any graph @, satistying Ai{; satisfies
also @ (cf. (5.16)).

LEMMA 5. Condition of Pdsa type (5.9) and conditions (5.14) are equiv-
alent, that is,

(6.9) if G =@, then AD(G) < A®(G) < AN (G).

Proof consists of three parts.

1. Let @ = @, satisty A$). Then from (6.8), (6.7) and (5.9) it follows
the conjunction

. n—s—1
d(®,s,G) >t if max{1—s,0}<t< —

A Bpyrey @) S t+1 0 8 =1, =—7—L——;—1e Z.
Hence, putting ¢ = ¢ —s and #,+1+s = I, we obtain »® (see (5.13)).
Therefore the graph G, satisfies A®). So A%) = A®),
2. Let G = @, satisty A{). Then @ satisfies (6.7) and «!®). Hence,
owing to definition (5.13) of (8, G satisfies conditions (5.11,) and (5.12).
To prove that G satisfies w!”) (see (5.13)), put

. *xn-+s—1
by 1= — |’

Hence, by (2.1), ¢, > 1. If ¢, = 1, then obviously either s = 0 and
n =3 or s =1 and n =2, and then (5.11;) is unessential. Therefore,
by (5.13), we have

ol <« (5.12) < [d(x,, G,) > 2 —s].
Hence, by virtue of (6.7), we obtain (5.11,) and »!?. Analogously, if

8 = n—1, then (5.11;) and (5.11,) are both true. So »!’) holds true. And
if 4 > 2 and s < n—1, then

n+s—1
max{l, s} <i—1 < +




HAMILTONIAN CIRCUITS 307

Hence, by (5.11,), we have
n—s8—1
—
Therefore, by condition (6.7), if ¢ > i, (= (n+8—1)/2), then d(z;, @)
> (n— s —1)/2. Thus, clearly, (5.11¢) > (5.11,). So @ satisfies w{?).
Hence the implication 4% = A® holds true in all cases.

3. Let @ = G, satisty AY). Therefore, by (6.8) and definition (5.13)
of of!), G satisfies (5.11,), (5.12) and (6.7). Now we easily deduce that @
gatisfies A%, So AM = AP,

LEMMA 6. Condition of Pdsa type (5.9) is stronger than condition of
Bondy type (5.15), <. e., by (6.9),

(6.10) if G =@,, then AV(G) implies AD(G).

d(@;_, G) = ig—

@
WV

Proof. Suppose that a certain G = @, satisfies A() (see (5.14)). There-
fore G satisfies (6.7) and «{?). Hence, by (5.13), G satisfies conditions
(5.11,) and (5.12). Now assume that integers ¢,j satisfy the conditions

1<i<jisn, dn,d)<i—s, dr,d)<j—s—1.
Hence, by (5.11,), we have

—s—1
i—3/>,d(a:,-,G)>n—2—_.
So 2> (n+s—1)/2, and therefore
j}’i%—l}#-

Therefore, by (6.7) and (5.12), we have d(z;,G)> (n—s+1)/2 if
n —s is odd, otherwise

n—s
2

Thus d(z;, G)+d(z;,G)>n—s. So G = G, satisfies of) (see (5.15))
and implication (6.10) is true.

d(wjy G)=d(x,q) >

LeMMA 7. Condition A$) is equivalent to condition of Bondy type, i. e.,
(6.11) if @ =@, then AQ/(G) < A®(G).

Proof. By (5.15), it clearly suffices to show that Af) implies A%).
To construet an indirect proof of this implication, suppose that a graph
G = @, satisfies A{) but does not satisfy 4®). Hence, by (6.8), the graph
@ satisfies (6.7) and of), but w® (see (5.15)) is not satisfied. So there are
integers 4,j such that

1<i<ji<sn, dz,qd)<i—s,
d(z;,G)<j—s—1 and d(x;,q)+d(x;,F) <n-—s.
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Hence @ is not complete. Suppose that ze V(G) and d(z, G) < d(z;, Q).
Then, by of) (see (5.15)), z is adjacent to any other vertex belonging
to W, where '

W ={yeV(G): d(y, G) < d(;, G)}.

Moreover, ze¢ W and, by (6.7), W = {,, ,, ..., #;}. Therefore

i—8s=d(@, @) =dx )= W -1>j-1=>q.

It is a contradiction if s > 0.

Now let 8 = 0. Then |W| =j =4¢+1, and the subgraph G, of G
induced by W is clearly complete. However, since G is not complete, we
have |W| = ¢+1 < n, and the vertices z,, z,, ..., z; are all of degree ¢
in Gy and in G. Therefore x;x,¢ E(G) and d(x,,G)<n—1—i<n—s—1
(for s = 0). However,

d(z;, )+ d(z,, )< (t—8)+(n—1—1) <n—s,
contrary to f). This completes the proof.

LryvMA 8. Condition of Bondy type (5.15) implies condition of Chvdtal
type (5.15), 1. e.,

(6.12) if G =G, then A®(G) implies A\ (Q).

Proof. Suppose the contrary. Then a certain graph G = G, satisfies
A® (i. e., (6.7) and o)), but, despite of w{l? (see (5.15)), there is an integer
i ma,x{l 8} <t < (n+s8)/2, such that d(x;,¢) <i—s and d(z;, ) <j—
—s8—1, where j = n+ 8 —14. Therefore 1 < ¢ < j < n. Moreover,

d(z;, @)+ d(r;, ) < (¢ —8)+(n—i—1) <n—s,
contrary to o (see (5.15)). The proof is complete.

LeEMMA 9. Condition of Chvdtal type (5.15) implies condition of Las
Vergnas type (5.17), 1. e.,

(6.13) if @ =@,, then AL(@) implies AN (Q).

Proof. Assume that @ (= G,) satisfies A9 (see (5.15)), but does not
satisty condition A{Y of Las Vergnas type. Hence, by (6.8), the arrange-
ment of vertices of G is defined by (6.7) and @ satisfies o{!?. Moreover,
in accordance with the negation of (5.17), there are integers ¢, j such that
max{l,s}<it<j<n, j=>n+s—i, dz;,q)<i—s, dr,q) <j—s—1,
vw; ¢ B(G), and d(z;,G)+d(z;,d) <n—s. Observe that, by ol if
i, : = max{1, 8}, then
(6.14) d(z;, G) > 0.

In order to simplify the notation, put d(z;, @) = h—s. Hence, by
the assumption, h < ¢ and ¢ > {,, whence, owing to (6.7) and (6.14), we
have h—s > 0. So h > s+1 > max{l, s}. On the other hand,
n-+s

5

1
h =d(w,-,G)+s<5(d(w,,G)—+ d( x,,G)+s< (n—s)+s =
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Moreover,
d(zy, @) < d(;,G) (= h—s),

since h < i. So, by »{!? and the properties of i and j,
Ad@pis_ 1, @) =n—h =n—s—d(z;, G) > d(z;, G).

Therefore max{n+s—¢,1+1} <j<n+s—h. Henceif j =n+s—g,
then '

n+s

max{l,s} < h<g<min{l,n+s—i—1} <

Now we obtain

d(z,, d) < d(x;,F) =h—s<g—s
and
d(wn+s—g7G) =d(mj7G)<j_8—1 =n—g-—1,

contrary to of?. This completes the proof.
Lemmas 1, 2,...,9 imply the following corollary:
CoroLLARY. Condition (5.17) of Las Vergnas type is the weakest among
all conditions AY)(k), i. e.,
(6.15) if @ = G,, then A")(k; @) implies AU(G) for r =1,2,...,10,
where m, s, k satisfy (2.1) except for r = 4 when ke [0, n].

Note that the implication converse to (6.15) can be true for certain
values of r, n, s, k (in particular, for small n — s).

7. Relations between conditions of Section 5 and operation *. Recall
(2.1) and note that the existence of a path s-covering of G, is equivalent
to the existence of a path (s —p)-covering of @, x K, (cf. (4.1)). So it seems
interesting to investigate relations between conditions A" (%) and the oper-
ation x. We will investigate relations between conditions A®)(%; @) and
AL o o(k+p;GxK)) for G = G,,.

In the proofs of the first two lemmas below we will make use of the
following observations which easily follow from definitions (4.3),
(4.4), (4.7), and (4.10) of @,,(¢), #,,, a,,, and x,,, respectively. Namely,
one has

Pntp,s—p (t +p) = (pns(t) +np+ (5)7

(7.1) Anips—p = %ns T D)
Qpip,s—p — Ong +p,

~

Xpn+p,s—p — ¥ns +p.
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In what follows we will also use the following easy remarks about
the graph G,*xK,:
d(z,GxK,)>p for all ze V(G,*xK)),
p+d(x,G,) if e V(G,),

d(z,G,xK,) = )
p+n—1 if ze V(K,),

(7.2)

BGn ) =BG+ + (b).

LeEMMA 10,. Conditions of Erdés type (5.1) have the properties
(7.3) AQ(k; G,) < ALY (k5 Gy)
< AD) . (ks +p; G x Ky
< A g p((k+0)sp; Gur ) <> AL, (k45 G2 )

and the converse of the one-way implication in (7.3) need mot hold only if

(7.4) Pt ps—pl(E+Plo—p) > Prype_p(ks+ D),
which i3 equivalent (under assumption (2.1)) to the condition
(74) 1—-s8<0<p, k<0 mnt+s>6max{l,s—p,s+k}—j

with j = 0 for odd n+ s, and j = 3 otherwise.
The second equivalence in (7.3) i8 equivalent to

(7.5) AR(Ky3Gy) = AD p o p (ki +D5 Gx Ky)
for each k, satisfying the condition
(7.6) max{l—s8,0} <k, <nmn—1 and kye Z unless k,> x,,.

Proof. The first and the last equivalences in (7.3) are true by (5.5).
The one-way implication in (7.3) also holds true. In fact, by (4.5),

(7.7) (k+p)_p, =max{l—s+p,0,k+p}
<max{l—s+p,p, k+p} =k, +p,

and

(7.8) (k+Plop <o+ p

if and only if

(7.8') 1-s<0<p, k<O,

whence k,+p = p.
Hence, by (7.2), for each ze¢ V(G ,*K,),

A2, G Kp) > (k+p)y_p = d(w, G ¢ K) >k +p.
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By (4.6), the function ®,,,, ,(-) is decreasing. Hence, by (7.7),
B (G )| > Prypop((B+D)sy) = 1B(G*E) = Ppypop (ks + D).

Now, the law of multiplying implications side by side, applied to
the last two implications above, yields the one-way implication stated
in (7.3) (cf. formulation (5.1) of condition A{)(%k) of Erdos type). Further,
owing to (7.7), it is easily seen that the converse of that implication need
not hold only if (7.4) holds true. It is the case only if (7.8) or (7.8’) hold
true, and then, by (7.7), (4.4), and (7.1), we have

max{l—s+p,0} <(k+p)y_p <ks+P =P <tpe+D = %pypa_p-

Therefore, by definition (4.6) of ®,,(k), and by (4.8) and (4.9), ine-
quality (7.4) is equivalent to the conjunction of (7.8) and (7.9), where

(7°9) (k+p)s—p < ’;n+p,s—p°

For s > 1 (ensured by (7.8) or (7.8’)), owing to (4.10) and (2.1), ine-
quality (7.9) is equivalent to the condition

— 4
(k+p)a—p < [*an+p.a—p] = [an+p.s—-p + E]’
1.6, (K+2)_p < @nips_p, Since (k+p),_,e Z. Hence, by (7.7) and by
definition (4.7) of a,,, for s > 1 inequality (7.9) is equivalent to the
condition

(7.9%) n > max {6 — s, bs — 6p, bs + 6k} —j,

with j, = 1 for odd n + s, and j, = 4 otherwise.
Thus

(7.4) < (7.8) and (7.9)
< (7.8") and (7.9)
< (7.4").

Now it remains to prove (7.5) for each k, satisfying (7.6). In fact,
if k satisfies (2.1), then, by (4.5), k, : = k, satisfies (7.6), and conversely,
for any k, satisfying (7.6), we have (70:)8 = k,. Therefore the implication
(7.6) => (7.5) is equivalent to the second equivalence stated in (7.3) (and
yet remaining to be proved).

Assume that k = k, satisfies (7.6). Hence, by (7.2) and (5.1), we
infer that the first factors of the conditions standing in equivalence (7.5)
are mutually equivalent. Now, to prove (7.5), it clearly suffices to show
the following equivalence concerning the number of edges in @, and
G.xK,:

(100)  |B(Go)] > Bpy(k) < |B(Gx Kp)| = Bpya (k4 P).
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This equivalence is obvious if ¥ > » = x,,. In fact, in that case
k4+p > %,,5s_p (see (7.1)) and therefore, by (4.6), we have

(pns(k) =0 = q)n+p,s—p(k+p)'
Assume now that
(7.11) max{l—s, 0} < k< x,, kelZ.
By (7.2), for the proof of (7.10) *t suifices to show the following
equality: '

(7'12) d)'n+p,s—p (k+p) = l[)na(";) +np + (g)

(for max{1—s, 0} <k < %,,).

Let = belong to the set T, (k) = {k,, a,,, #,s} defined in (4.11). Then,
by (4.12’) and (7.1), the richt-hand side of (7.12) equals

Pns (1) +0p + (g) = Pnip,s-p (v+p).

However, it can easily be proved that

Te Tpg(k) <7+ Pe Tnypep(k+p)

for k satisfying (7.11). Hence, by (4.12’) we have (7.12). Thus the proof
of Lemma 10, is complete.
Analogously, using (4.14) and (4.15), we can prove that

(k) =0 if &> x,,

* —
Preras D = ot i rup +(B) it b

Hence, by (7.2), we have the fol'nwing lemma concerning A% (k)
(see (5.6)): .

LEMMA 10,. Condition (5.6) is compatible with the operation * on graphs,
that 1s,

(7.13) AQ(K; G,) v AD, p o p(k+D; Gux Ky).

(Note that both sides of equivalence (7.13) are self-contradictory if either
k¢ Z or k < max{2—s, 0} (cf. the Remark following Lemma 1)).

Lemma 10;. Condition (5.7) of the second Ore type has the property
(7.14) AR o o p(GxK,) implies AQN(G,),
and the converse implication need not hold only if
(7.15) n—s8 18 even, $ > 2, and s—-1 << p<s.

Proof. The proof is based on the following property of af) (see (5.7)):

3 3
a(n-)f-p,s—p = a’g'ng + 2p7
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where the equality does not hold if and only if (7.15) is true. Since, more-
over, any two vertices non-adjacent in G,* K, belong to V (G,), Lemma 10,
is clearly true.

LEMMA 10, (r > 4). Condition AT (with r > 4) is compatible with the
operation x* on graphs, that is,

(1.16,) AD(k;G,) =AY, . ,(k+p;GxK,), r=4,5,..,11.

So modification (5.8) of the condition of the second Ore type, condition
of Pésa type (5.9) and its reformulations (5.14), as well as conditions
A" of all remaining types, 8 <r < 11, i.e., of Bondy, Skupien-Wojda,
Chvatal, and Las Vergnas types (see (5.15) and (5.17)), are compatible
with the operation of join *.

Easy proofs of (7.16,) for r = 4, 5, ..., 10 are left to the reader; we
will only prove equivalence (7.16,,). Of importance in the sequel is only
the implication

(7.17) AG)(G,) = AQYp, (G Ky)

concerning condition (5.17) of Las Vergnas type.

Proof of (7.16,,). There is nothing to prove if either s == 0 or p = 0.
Assume therefore that s >1 and p > 1 (s = p). To prove (7.17), suppose
that G, satisfies (5.17). Let y,,..., ¥, be an arrangement of vertices of
G, ensured by (5.17). Let K,NnG, = K, and V(K,) = {Y,11y -++s Ynsp}-
We will prove that ¥, ..., ¥,, ..., ¥n4, i an arrangement which meets the
requirements of A4, .  (G,*K,). So let i,j be any integers such that
(7.18) max{l,s—p}<i<ji<n+p, j=n+s—i,

d(yi’Gn*Kp) <_7:_3+p9 d(yj7Gn*Kp)<j—3—l+p7
yiyj ¢ E(Gn* -Kp) .
Thus y;, y;e V(G,). So n>j>n+s—i, and ¢>s. Therefore, in
view of (7.18) and (7.2),
max{l,s}<it<j<n, j=n+s—i,
Ay, G, <i—s, d(y;,G)<j—s—1, and yy;¢E(G,).
Hence, by AYY, it follows that d(y;, G,)+d(y;, G,) > n—s, whence
A(Y;, Gpx Kp) - d(y;, Gox Kp) = (n+p)—(s—p).

This completes the proof of implication (7.17)

To prove the converse implication, let y,, ..., ¥,,, be an arrangement
of vertices of G, K, satistying the requirements of A$Y, . ,(GxK,).
So for all 4, j condition (7.18) implies

d(y‘i7 Gn*Kp)'Jl_d(yj, Gn*Kp) ;2, n—s+2p'



314 Z. SKUPIEN

Assume that
(7.19) V(G,) ={Wy -y ¥}y 1< <...<w<n+p, and 2 =y,
for i =1,...,n.
Hence
(7.20) i<v; fori=12,...,m.
Suppose that ¢, j are any integers satisfying the condition
max{l,s}<i<j<n, j=n+s—t,
d(z;, @) <i1—s, d(z;,0,)<j—s—1, and x;xv¢FE(G,).
It suffices to prove that
(7.21) d(z;, G,)+d(z;,G,) >n—s.

Observe that, by the above supposition and in view of (7.19), (7.20)
and (7.2), we have

max{l,s—p}<i<wm <y <n+p, v=j=nts—i=n+s—,
d(?/vﬂ Gn*Kp) = d(”’u Gn)""'p <v%—8+Dp,
d(yv:;v Gn*Kp) = d(wjr Gn) +p < 1’]-—8—1+p, and yviij¢E(Gn*Kp)'

So condition (7.18) is satisfied with ¢, j replaced by »; and v, re-
spectively. Therefore

d(?/,.‘, G.x K,) +d(?/,.j, G*xK,)>n—s+2p,

whence, owing to (7.19) and (7.2), we have (7.21). This completes the
proof.

8. Main result and concluding remarks. Now we are able to prove
the main result.

THEOREM. Each of the conditions A®)(k), 1 < r < 11, 48 sufficient for
a graph G = @G, to have a path s-covering of vertices.

In the proof we refer to the following theorem:

TuroreEM (Las Vergnas [16]). AW (see (5.17) with s = 0 and r = 11)
s a sufficient condition for a graph G, to be Hamiltonian.

No other quotations are needed. In fact, implications (6.15) and (7.17)
with p = s yield
(8.1) AD(k; G,) = AW, (G xK,) forr =1,2,...,11.

Now the theorem of Las Vergnas ensures the existence of a Hamil-
tonian circuit in G, *K,. So G, clearly contains a path s-covering
(cf. (4.1)).
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Forr =1, 3, 5, 8, 9, 10 the theorems analogous to that of Las Vergnas
are also known. Except for r = 3, those theorems, Lemmas 10,, and
equivalence (4.1) clearly ensure the sufficiency of the separate conditions
AM(k), r =1, 5, 8, 9, 10. In fact, in any such case, owing to Lemmas 10,,
we have
(8.2) AD(k;@,) = AD, (k+s; GxK,), r #3,k==Fk forr=1.

It is the case also for the condition of the second Ore type, i. e., for
r = 3, if either n —s is odd or s < 2 (see Lemma 10,).

It seems worthy to notice, in connection with Section 7 of this paper,
that Ghouila-Houri [10] (see also [19]) appears to be the first who made
use of the operation of join * in order to obtain and to prove a sufficient
condition for the existence of a Hamiltonian path. His results [10] pertain
to the existence of unidirected paths and unidirected circuits in digraphs.

Investigations on path coverings of vertices in ordinary graphs were
originated by Ore [20]. His results imply the following sufficient condition
for a graph G = @, to have a path s-covering:

Vo,ye V(G,): zy¢ E(G,) = d(z, G,)+d(y, G,) = n—s.

It is easily seen that condition A{) (see (5.7)) is a slight refinement
of that one.
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