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A NOTE ON INHOMOGENEOUS CONTINUOUS-STATE
BRANCHING PROCESSES

In this note we prove a continuous version of Theorem 2.1 in [1],
Namely we state the necessary and sufficient condition for:the limit of the
martmgale X,/M, (t - ) to be non-degenerate at zero, where {X,, t >0} isa
Continuous-state branchmg process, poss:b]y inhomogeneous, and M,
=E[X,| X o=1].

Continuous-state branching processes were mtroduced by Jlrma [2] In
this note we consider the case E = R, , where E denotes the state space and
R+> = [0, o0). Jifina’s definition is more general than ours, namely E = R
n21,

Let E= R, and let & = % (E) be the o-field of Borel subsets of E. Let
Us consider the following class of functions P,,(x, A):

(1) P,,(x, A) is defined for s,teR,, s<1, xeE, Aeé.
- (i) For fixed s,teR,, s<t, and Aeé, P, (x, A) is a measurable
fuTlctlon in xcE. '

(i) For fixed s, teR,, s<t, and xeE, P, (x,) is a probability
Measure on &,

(iv) For each seR,, xeE and Aeé&, P, (x, A) = 1,(x), where 1,(x) is
the indicator function of 4, ie., I,(x)=1 if xeA4 and I4(x) =0 if x¢A.

(v) For each s, u, teR,, s<u<t, xek, "Aeé. the Chanman—

olmogorov equatlon is satisfied:

I (X, dY) P, (v, A) = Py, (x, A).

(vi) For each s,teR,,s<t, x, yeE, P,, satisfies:

P, (x+y, ) = P (x, ) * Ps,(y, ),

Where x denotes convolution.
A Markov process {X,, t = 0} with transition probabilities P,, satisfying
Conditions ()(vi) i1s called a contmuous-state branching process.
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Denote the Laplace transform of X, conditioned on X, =x (x>0,
1 2s) by

U

tps.z (xa u) = E[exp(“uXt) I Xs = x] = _[ e Ps,t(x9 dy)'
0
Then {vi) implies the functional equation
(1) 'Ps.: (x+yv u) = .Ps,r (x, u) lFs,t(ya u).

Arguing in the usual way we can write ¥, (x, ) in the form
(2) ’Psr (x’ Ll) = exp(_'st.r (u))

Therefore, it is easy to translate the Chapman-Kolmogorov equation in (V)
into the equivalent condition

(3) w.\'.u (d’u.f (:)) ='4’x.;(3) for 0 £s<suxt and z >0

which is analogous to the functional iteration property of the generating
functions of a Galton-Watson process. Let M,, = ¥.,(0+) be finite, where '
denotes differentiation with respect to u. From [3], Lemma 2.2.6, it follows
that the function y,,(u)/u is decreasing in ue(0, cc). Hence the function

‘I’s,: (u)
u

for 0<s<tand u>0

Hs,t (u) = Ms,t -

satisfies
4) 0<H,,(u)<M;,, H, w0 as ul0.

Under the condition y,,(0) = 0 we get, by (2), E[X, | X, = x] = xM,, and,
by (3), My, =M, M, for 0 <s<u<t To avoid trivialities we exclude the
degenerate case, i, we assume that M,, >0 for every s, teR,, 0 < s <!
which is equivalent to the condition P,,(x, {0) < 1 for every s, teR,, 0 <5
<t. and for every x> 0.

Put M, =M,,. It is easy to verify that W, = X,/M, is a non-negativé
martingale, and hence converges to a .random ﬁrariab]e W. Cleaﬂﬁ
0 < E(W) < x. We state the necessary and sufficient condition for E (W) > 0.

THeoREM. Let {X,,t >0} be a continuous-state branching procesS

possibly inhomogeneous, and let 5 > 0. Then E(W) > 0 if and only if for somé
>0

) Z{ M(;-l- 1)9,vd H_(v,— m,va(E/Mva) < .

Proof. Let us denote by @,(u) and ¢(u) the Laplace transforms of W
and W, respectively. Then

@ (u) = E[exp(~uW))] = ¥y, (x, u/M,) = exp(—xio,; (u/M))):
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Since W, — W, the convergence

lim @ (u) = lim exp(—xyo, (W/M,) = ¢ (u)

1+ 1—o
implies
lim o, (u/M,) = B(u),
f fmd- 2]
and hence
(6) @) = E[e™ "] = e *BW,

Now we prove the sufﬁéiency of the Theorem. It is readily seen that there
I8 no loss of generality in taking é = 1, which we do henceforth. To see that
the random variable W is not degenerate at zero it suffices to prove that

lim @,(u) = () <1 for some u > 0.

Because of (6) it suffices to show that B(u) > O for some u > 0. Define
(pv,n(u) = !//v.n(u/Mn)a V= Oa Is R (B wn(u) = '/lo,n(u):v
¢n (u) = fPo,u.(ul
It follows from the definition of H,, and from (3) that

(Q’l,n(“))).

M,

H
@n(u) = M, @, ,(u) (1 — ol

Iterating we obtain

= H"— v n
0alt) = My 1 @pe1,0(0) [ [1" M @ (u))].
v=1 v—1,v

Now (4) implies ,,(u) < uM,, for 0 <s<t and u> 0. Consequently,
?vn(u) < u/M,. Since the function H,, is non-decreasing, it is clear that

H;_i (o..w) < H;- ,(u/M,),

Which together with (5) implies

y tim | [1 —-—H“""”(""""(“))] > 0.

R y=| Mv-f-l'.v

To prove that
lim ¢,(#%) = B(u) >0 for some u>0

n—+w
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it therefore suffices to show that the sequence M,_, ¢,_, ,(u) approaches a
finite positive limit. But

My s Gu () = [1 A 1alf M"’],

Mn— 1,n
so that

llm Mn—l (pn—l,n(u) =u
and the sufficiency of (5) is established.
We now prove the necessity of (5). Suppose that E(W) > 0. Then there
exist f and y in (0, 1) such that

ol
(p(u)>2ﬁ for 0 <u<xy.

Let

Ay (u) = L%Sﬂ

Since @,(u) —+ @(u) for all u > 0, we see that there exists an N, such that
An(u) > B for n > Ng. But, for any n, i,(u) is a decreasing function of u > 0.
Thus we get A,(u) > p for 0 <u <7y, n> N,. The obvious inequality

1—exp(—x¢, (... W) < X, (p,.n(w))

now yields

3 < 1_@,‘(14) < x'//v (‘pv,n(u)).
u ]

Formula (4) implies

'x¢v ((Pv,-n (u)) < XMV gov,a(")
u = u '

Since @, ,(u) > Bu/xM, and the function H,, is non-decreasing, we have

(8) | Hv-l,v((Pv,n(u)) 2 Hv—l,v (;%)

Now the inequality

" H,_ v(ﬁom(u))]
" S 1_ ll * s
(p (u) “ v1=_[1 [ Mv— 1,v

yields (7). Inequalities (7) and (8) imply (5), which completes the proof of the
Theorem.
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