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CURVATURES OF SURFACES
ASSOCIATED WITH HOLOMORPHIC FUNCTIONS
BY

RICHARD JERRARD (URBANA, ILL.)

1. Introduction. The object of this note(?) is to study various curva-
tures associated with holomorphic and meromorphic functions. They are
interesting from several points of view. First, there is a single Gaussian
curvature of the two surfaces associated with any meromorphic function,
which is a real analytic function in the plane without singularities. Second,
the curvatures satisfy certain extremum properties, e.g. the Gaussian
curvature can only attain an interior maximum in a domain when it
is zero. Finally, some theorems of differential geometry can be formula-
ted as theorems involving arbitrary holomorphic functions.

2. Curvature formulas. We consider a holomorphic function f(z)
=u(x, y)+ v (@, y) and the two harmonic surfaces defined by the functions
% and v in E3. Denote by k, the curvature of the plane curves % = con-
stant, by K, and M, the Gaussian and mean curvatures of the u-surface,
by k,, the geodesic curvature of some specified curve on the u-surface.
Corresponding notations k,, K,, M,, k,, are used for the function w.

We first obtain formulas for these curvatures in terms of the function
f. The procedure can be illustrated with k,, starting with the well-known
formula
U — QU U Uy - Uy

(ui +'”/f/)3/ 2

Using the fact that 4 and v are conjugate harmonic functions, we

find

k, =

Uz (U2 —V2) +2Uz 00z

e (uz+vz)*2
Then, since df[dz = f' = uy+ v,
o _ Rel(Un ive) (up—v2—20us0,)] _ —Re[f"f*]
: A 7P
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By these methods we obtain the formulas given in
LEMMA 1. If N = (14 |f'|?)V2, then

(1) —ky+iky = If'1f" [f'?
(2) - u+in = If’l4f,I/-N3f’27
(3) K, = K, = —|f"|*|N?%,

kgu = 03[—vo'uaaai+k0]/‘N7

4
@ kyv = O't[uo”aaof‘l‘ko]/N'

In (4) we suppose that ¢ = x(s), ¥ = y(o) describes a curve C in
the z-plane with arc length parameter o and curvature %,. The curves
in the » and v-surfaces whose projection is C have arc length parameters
¢ and ¢ respectively.

The mean curvatures and the curvatures of the level curves of
% and v are related in a simple way. If y is the angle between the normal
to a harmonic surface and the vertical, then siny = |f’|/N, cosy = 1/N,
and

—M,+ M, = sin®y (—k,+ ik,).

Furthermore, the Gaussian curvatures of the conjugate harmonic
surfaces are equal. We will write K, = K, = K,, and regard K; as the
Gaussian curvature of f. '

3. The Gaussian curvature. The real-valued Gausgian curvature
function K,(z) = — |f"'|?/N* is the most interesting of the curvatures.
We first note that for any holomorphic function f there is another holo-
morphic function with exactly the same Gaussian curvature.

LEMMA 2. Any two holomorphic functions f, g such that g’ = 1/f' have
the same curvature K,(z) = K;(z).

Proof. This is easy to verify by substituting ¢ into the curvature
formula.

Some interesting pairs of functions with the same Gaussian curva-
ture are (22/2, log 2), (¢"/n, 22~ "[(2—n)), (€%, ¢ %). Since for the function
22 —n),n > 2,

K(2) = —(n—1)"r""* |1+ +"7%),

where r = |2], it is evident that if we define the curvature to be zero
at poles of meromorphic functions, then the Gaussian curvature of
a meromorphic function is continuous in the whole plane. In fact, we
have the following

THEOREM 1. If f i a meromorphic function, then its Gaussian curva-
ture is a real-analytic function in the whole plane. The zeros of K; occur
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at the zeros of f'' and (by definition) at the poles of f. The poles are charac-
terized by the behavior of K;; if 2 = 0 18 a pole of order m, then

K;(2) ~ (const)”™ (z—>0).
Proof. To prove the first statement we use the representation
Ky = — (Uge+Vz0) [(1+ uz+0z)"

It is clear, since # and v are analytic except at poles of f, that K, is
analytic except at poles of f. At a pole f has the form g(2)(z—z2,)".
By Lemma 2, K; = K;, where

h = f[(z—zo)”“/((z—zo)g’—ng)]dz,

and A is analytic at z,. Since by definition K;(z) = 0 = Kj(2,) and
K, is analytic at 2,, K; is also analytic at z,.
To prove the second and third statements assume that f has a pole
at zero, i.e. f(2) = ¢g(2)2~ ", where ¢ is analytic at zero and g(0) # 0.
Then
—1g e " —2ng 2" 1L n(nt1) gz "
(1+1g'2™" —nge™"""[%)? '

Since n >0, the coefficients of g are the dominating terms near
zero in this formula, and we find

K~ —(n+1)r"[n’|g(o)* (2 0).

It is interesting that in spite of the great variation in the harmonic
surfaces of 2~" near zero, K depends only upon r and tends smoothly
to zero. Among the powers of z, only for 2£* (0 < a < 1) does the curva-
ture become infinite at zero; for log z it is again analytic and attains
the minimum —1 at zero.

The Gaussian curvature is also closely related to a condition for
a family of holomorphic functions to be normal.

THEOREM 2. If F = {f,} s a family of holomorphic functions in a do-
main D, then F' = {f,} is a normal family if and only if, in each compact
set C in D, K; has a uniform bound for all feF, all zeC.

Proof. This follows immediately from the fact [1] that a neces-
sary and sufficient condition for F’ to be normal is that [f'|/(1+|f|?)
be uniformly bounded on compact subsets.

The Gaussian curvature also can be given a geometric interpreta-
tion in forms of the chordal distance in stereographic projection. If
d(z, 2,) is the straight line distance between the stereographically pro-
jected images of 2z and 2, on the unit sphere, then

K, =

2 [2—z,|

[(1+ [21%) (1 + lzol )12

d(zy 2y) =

9 — Colloquium Mathematicum XXI 1
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If we replace z and 2z, by f'(2) and f'(2+h), then
i B (@), £ ()

h—>0 h

= 2(—K,(2))12.

Thus K; is essentially the square of the change of scale in the map-
ping from the z-plane to the Riemann sphere of f'.

4. Extremum properties of the curvatures. In [3] it was shown that
if » is harmonic in some simply connected region D, and if grad « # 0,
then |k,| satisfies the minimum property, i.e., it attains its minimum on
0D and it cannot have a local minimum in the interior unless %, = 0.
We will show that K;, M, and M, have similar properties.

THEOREM 3. If f is holomorphic in a domain D, then the curvatures
— Ky, | M,|, | M,| cannot have any local minimum in D except zero. (—K;)
attains its mintmum where f'' = 0; |M,| and |M,| altain their minima
where f' = 0 or where Re(f"'[f'?) = 0, Im(f"'[f'2) = O respectively.

Proof. Considering the Gaussian curvature first, we see from (3)
that K; <0, and

log(—K;) = 2log|f"|—2log(1+[f'|?).

We compute the Laplacian of log(—K;), first observing that log |f"’|
is harmonic. Then if F = |f’|, we find

—4[F(1+ F?) AF + (1 —F") lgrad F| 7]
(1472 '

Now if ¢ is any holomorphic function

Alog(—K;) =

Algl = |gradlgi|*/lg],
and upon applying this formula to the calculation one obtains

— 2
8 |grad F'| <

Thus log(—K;) is superharmonic except when K; = 0. Hence K,
cannot have a local maximum except when K; = 0.
Turning to the mean curvature we find from Lemma 1 that

log|M,| = log|k,|+3log F— % log (14 F%).

To obtain its Laplacian we obgerve that the last term has been com-
puted above, the middle term is harmonic and the first term is given
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in [3]. We have

|grad U|? 6|grad F'|2 <

AlOgIMul = - IE (1+.F2)2 x Y,

where U = Re(f'’/f'?) is harmonic. Then log |[M,| is superharmonic
except where M, = 0.

If we restrict f so that f° # 0, then |M,| = 0 only when U = 0.
Since U is harmonie, its level curves extend to the boundary of D. There-
fore, if f' # 0, |M,| attains its minimum on the boundary.

The function ¢° has local maxima for all three curvatures |M,|, |M,|,
and —K.

5. Integral formulas. The most interesting integral formula of
differential geometry which can be applied here is the Gauss-Bonnet
theorem

JK,dAu = 27t—a£kgud8,

where D is a domain bounded by a smooth simple closed curve. The
integrals are with respect to the area and the boundary length of the
u-surface, and k;, is' the geodesic curvature of the boundary curve, which
is imbedded in the u-surface.

If dA and do represent the differentials respectively of plane area
in the domain D and of arc lenght of 0D it is easy to show that

dA, = dA, = NdA,
(5) ds = (1+ug)2do,
dt = (1+ve?)V2do.
For the 4 and v-surfaces the formula then takes the form, using (4),
l[lf”lleadA = —2w+o£[—vau“a§+ k]/N do,

g‘lf'qz/NsdA = —2n+ {[u.,vaao?—l- ko]/N do .
) |

The two integrals on the right-hand side must be equal, and this
leads to the integral formula

6£ [vauaa 0’3 + UeVs0o O'E]/N dO' = 0 9

which is' again valid for any function f = -+ holomorphic in D. As
before, ¢ is arc length on 0D while s and ¢ are arc length parameters on
the boundaries of the w and v surfaces respectively.

Beckenbach [2] has obtained an inequality which applies to non-
negative functions having subharmonic logarithms. For our purposes
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it may be stated as follows. If p and ¢ are two such functions, D is a closed
disc in their domain of definition with boundary C, then

Mp(pq) < Mo(p)Mc(q),

where Mp(pq) is the mean over D of pq, Mo(p) is the mean over C of
p. The functions —1/K;, 1/|M,|, 1/|M,|, 1/|ky|, 1/|k,|, are all of this class
Taking ¢ =1, p = —1/K, we find for example that in the unit circle

dA 1 [ ds
[[s1 e
p Ky 2¢ K
Similar inequalities hold for the other functions listed, and for their
products.
REFERENCES
[1] L. V. Ahlfors, Complex analysis, New York 1953.
[2] E.F.Beckenbach, Functions having subharmonic logarithms, Duke Mathematical
Journal 8 (1941), p. 393-400.

[3] R.P.Jerrard and L. A. Rubel, On the curvature of the level lines of a harmonio
SJunction, Proceedings of the American Mathematical Society 14 (1963), p. 29-32.

Regu par la Rédaction le 16. 8. 1968



