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ON MARCZEWSKI-STEINHAUS TYPE DISTANCE
BETWEEN HYPERGRAPHS

This paper is concerned with establishing a metric space of hyper-
graphs with the same set of vertices. In particular, the distance between
hypergraphs generated by arborescences with the same set of terminal
vertices is also given. The basis of the proposed distances is the Marczewski-
Steinhaus distance between two sets (see [6] and [7]).

It is shown also that hypergraphs can represent a grouping of objects
by different cluster analysis methods. An example of comparing different
clusterings, using the above idea, is given.

1. INTRODUCTION

Marczewski and Steinhaus [6] generalized the Fréchet-Nikodym-Aron-
szajn distance between two sets and applied this distance in the analysis
of numerical characterization of differences between biotopes (see [7]).
In this paper we establish a metric space of hypergraphs with the same
set of vertices. This problem is equivalent to the one of finding the distance
between two families of subsets of the same set (see Ulam [9]). In our
case we apply the Marczewski-Steinhaus distance as a basis for the dis-
tances between such families. We also consider a special case of hypergraph
being generated by an arborescence and whose family of edges has spe-
cial properties. The Marczewski-Steinhaus type metric which we propose
i related to this property.

The idea, which leads us to present both distances together, arises
from the fact that a hypergraph can be regarded as a representation of
grouping of different objects. We can consider an object as a vertex in
2 representing hypergraph, and the established group (or cluster) as an
edge of this hypergraph.

Suppose that different methods of clustering yield different results for
the same set of objects. The problem which we attempt to solve, in the
next stage of analysis, is the following: which methods give similar results.

* On leave from the Institute of Mathematics, Adam Mickiewicz University,
Poznan, Poland.
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The distance of hypergraphs representing these methods provides us
with the basis to compare them. It can also be regarded as the first step
to the cluster analysis of cluster analysis methods.

In addition, results of hierarchical clustering can be presented in the
form of a binary tree with a root, which is a special case of an arborescence.
Similarity of two such methods can be treated as a function of distance
between trees or, more generally, as a distance between hypergraphs
generated in a special way by these trees.

2. METRIC SPACES OF HYPERGRAPHS

2.1. Basic definitions. Let X be a finite set such that [X| = n,
where |- | denotes cardinality of a set. Denote by E* the class of all subsets
of the set X, and by u(FE) the measure of a subset F € E*. Assume also
that u(F) < oo for all elements of the class E*. Then, according to the
Marczewski-Steinhaus generalization of the so-called Fréchet-Nikodym-
Aronszajn metric, the distance between two sets from E* is

Q(En Ez) .

Wy B e (B.UE) > 0
1) 0, (By, By) = | w(B,UE,) 1V ) > 0,

0 if u(B,VE,;) =0,

where
o(E,, E,) = N(E1 AE,),

i.e., the measure of symmetric difference of sets E, and FE,. Note that
0<o,(,)<1 In particular, if we assume that u.(E) = |E|, then,
setting

e, = |E,|, e =|By) and d = |ENnE,,

the Marczewski-Steinhaus distance between E, and E, can be presented as

e,+e,—2d

(2) O'pc(EuEz) = PRSP .

The family F = (E;; i € I) of subsets of X is said to be a hypergraph

on X if '
E,#+#0 (1iel) and (JFE;,=2X.
tel

The tuple H = (X, E) is called a hypergraph, the elements z,, »,,..., z,
are its vertices, the sets E,, E,, ..., E,, its edges, and n is called the order
of the hypergraph.

An arborescence is defined as a directed tree that has a root, i.e.,
a tree with the vertex v,, such that all vertices of the tree can be reached
by a path starting from ov,.
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The outer demi-degree d* (v) of the vertex v is defined as the number
of ares that are incident out of v, and the inner demi-degree d— (v) of v is
defined as the number of arcs that are incident into the vertex v. The
vertices of an arborescence can be classified into three classes:

(1) root — a one-element class consisting of a vertex v, such that
d”(v) =0 and d*(v)) > 1;

(i) non-terminal vertices — N = {v: d~(v) =1, d*(v) > 1};

(iii) terminal vertices — X = {v: d~(v) =1, d*(v) = 0}.

In defining a distance between arborescences with the same set X
of terminal vertices, we use a hypergraph on X as its representation.

For other definitions we refer the reader to Berge [1] or to any other
book on graph theory.

2.2, Hypergraphs. Let o# be the class of all hypergraphs on the set
X ={2,,2,,...,5,). Suppose that H, =(X,E,) and H, = (X, HE,)
are two hypergraphs from this class, both having the same set of vertices
and different sets of edges:

E, =(Ey;iel,) and E,=(Ey;jel,).
Then the distance between H, and H, can be defined as

(3) 0:(H,, Hy) = %[maxmiﬂﬁy(Eu, Ezj)‘l"ma'xmino'u(Eué Ey)]1,

tely jely jeIy dely

where o,(*, ) is the Marczewski-Steinhaus distance between two sets.
It follows that:

(i) (#, @) is a metric space (when we identify any two edges of hyper-
graphs, the symmetric difference of which is of measure zero),

(ii) o:(H,, H,) < 1.

I we wuse in (3) the distance 0, (y ) defined by (2), then

(iil) o,(H,, Hy) < 1.

To prove (iii) note that, for B,; € F, and By ¢ E,, we have 0, (Biy By)
=11 u(BynEy) =0, ie., By;0By=0@. In the hypergraph H,, each
t.adge has a non-empty intersection with at least one edge of H,. This
Implies that

maxmine, (+,*) <1
as well as

maxming, (+,*) <1,
B, B °

Which proves the assertion.
The distance g, (-, -) given by formula (3) is @ modification of Ulam’s [9]
generalization of the Hausdorff metric for sets.

4 — Zastosow. Matem. 16.1
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Example 1. Let us consider three hypergraphs given in Fig. 1. The
set of vertices has |X| = 6 and

H,=(X,E), H,=(X,E,), H;=(X,E,),
where

El = l{]-’ 2’ 37 6}7 {3’ 5’ 6}’ {4}}7 Ez = {{17 2’ 4}’ {37 5’ 6}7 {2’ 3}7 {47 5}}

and .
Ea = {{17 2’ 3}7 {37 57 6}7 {47 5}} .

The distances between these hypergraphs are the following:
01(H,, H;) = .65, o,(H,, Hy) =.50 and ,(H,, H;) = .42.

Fig. 1. Hypergraphs with |X| = 6

2.3. Hypergraphs generated by arborescences. Let X = {#,, #,, ..., z,}
be the set of terminal vertices of an arborescence, i.e., d” (z;) =1,
dt(z;) =0fori=1,2,...,n, and let o denote the class of all arbores-
cences with X as the set of terminal vertices. Let A € & be represented
by the hypergraph H, = (X, E,), where the class of edges F, is defined
in the following way. Each » ¢ X (i.e., each non-terminal vertex in the
arborescence A) generates dt(v) —1 the same edges in K. Such an edge
consists of these elements of the set X which are the terminal vertices
of the subarborescence generated by a vertex v. The subarborescence
generated by a vertex v is obtained by treating this vertex as a root,
i.e.,, by assuming that d~(v) = 0.

The method of construction of the edges of H , leads us to the following
obvious assertions:

(i) If H, = (X, E,) is the hypergraph generated by an arborescence
A € o in the described way, then |E | = n—1.
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Proof. Let N denote the number of all vertices of an arborescence
4 € . Let us denote the set of all vertices of the arborescence A by

Vi={0V1sceeyUn_pn_1y@yy .0y Ty},

where v, is the root, v (j =1,2,..., N—n—1) a non-terminal vertex,
and »; (¢ =1,2,...,n) a terminal vertex.
It is easy to see that
N—n—1
D dt(m) =N-1,
3=0
i.e., the sum of the outer demi-degrees of the root and of all non-ter-
minal vertices is equal to the number of all arcs in the arborescence A.

Each edge of H, occurs in B, d*(v)—1 times, so the total number of
edges in E 4 is
N—n-1

D [dt(v)—1] =n—1,

which proves the assertion.

It is also straightforward that

(i) The hypergraph H , generated by an A € o is not simple if, for at
least one vertex v e A, d*(v) > 2.

By definition, a hypergraph is simple if its edges are distinct. A binary
tree, which is a special case of an arborescence, has the representation
by a simple hypergraph. "

Suppose that 4, and 4, are elements of o and are represented by
Hy =(X,E,) and H,, = (X, E,,), respectively.

The distance between these hypergraphs, we propose, takes into
consideration the specific way of construction of edges. We can also say
that the following equation describes the distance between arborescences:

n—1

min Z ou(By, BG),

(4) Qz(HAly HAz) =d(4,, 4,) =
i=1
where D is the i-th element of the permutation p of the first n —1 inte-
gers, P is the set of all such permutations, the distance o,(-, *) is given
by (1), and By eBy, B eBy, (i =1,2,...,n—1).

The following facts are implied by the above definition.

(1) gd ;@) is & metric space (when we identify two edges of the
repl‘t)esentmg hypergraphs the symmetric difference of which is of measure
Z€To).

(i) d(4,, 4,)<1, 4,, A, e o/. The distance d(-,-) is strictly less

than one if instead of o,(-,-) we use in (4) the distance o..(*,°) given by
formula (2). ’
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The distance g,(-, +) defined by (4) is a generalization of the Boorman-
Olivier [2] distance for rooted binary trees.

Example 2. Let us consider four arborescences with |X| =4
given in Fig. 2.

Fig. 2

The families of edges of the representing hypergraphs are
E,, ={{1,2},{3,4},{1,2,3,4}}, B, ={{1,2},{1,2,8},{1,2,3,4}},
E,, ={{1,2,3},{1,2,3},{1, 2,3, 4}},
E,,={{1,2,3,4},{1,2,3,4}, {1, 2,3, 4}},

and the distances are given in Table 1.

TABLE 1
I 4, A, 4,
A’ .25
4, .36 A1
A, .33 .25 .16

3. APPLICATIONS

One of the interesting problems in cluster analysis is the evaluation
of similarity of two different groupings of the same data obtained by dif-
ferent cluster analysis methods. In this approach we deal with some kind
of second stage cluster analysis in the sense that we want to cluster cluster
analysis methods. It can also be used, in a more general sense, to evaluate
stability of cluster analysis. First, we have to establish a measure of simi-
larity between two different results of grouping. Rand [8] proposed such
a measure based on averaging the number of pairs of grouped elements
which occur or not occur together in the same cluster. In other words,
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using graph theory concepts, Rand assumes that each group forms a com-
plete subgraph, which is not always an adequate model in clustering.

A variety of different metrics on a space of finite trees is also given
by Boorman and Olivier [2]. They use these metrics to evaluate differences
between hierarchical cluster analysis methods.

As was mentioned earlier, the results of both non-hierarchical and
hierarchical groupings can be represented by a hypergraph. In the case
of non-hierarchical grouping, with a fixed number of groups, it is a direct
representation. In the case of step-by-step hierarchical grouping (divisive
or agglomerative type) each method can be represented as a binary tree
which is a special case of an arborescence and, moreover, can be repre-
Sented by a hypergraph of this binary tree (as described in Section 2.3).

We want to present two different applications of Marezewski-Stein-
h:.ms type distances between hypergraphs to compare results of non-
hierarchical and hierarchical clusterings.

3.1. Non-hierarchical grouping. Jardine and Sibson in their book
(see [3), p. 250) analyzed the well-known Mahalanobis, Majumdar and
Rao data concerning anthropometric measurements on individuals from
23 local caste and tribal populations in India. To this goal they used two
methods, so-called 1- and 2-clustering. In graph theory interpretation,
having a valued complete graph with 23 vertices, they removed all edges
with “length” greater than some critical value. The first method (1-clus-
tering), denoted by A, determines clusters as maximal connected sub-
graphs of this graph. The second method (2-clustering), denoted by B,
fietermines a cluster as a maximal connected subgraph of all vertices
Tneident to at least two other vertices of this subgraph. A vertex not
Included in one of the above subgraphs forms either an isolated cluster
Or a two-element cluster with a vertex incident to it.

For three different critical levels, Jardine and Sibson applied both
methods 4 and B to analyze the anthropometric data. We denote the results
of method A (B) at the first level by A, (B,) and at other levels by 4,, A,
(B, By). In our interpretation we deal with 6 hypergraphs on the same
set of vertices X, where | X | = 23 (number of castes). The resulting families
of edges are given below, as well as the table of distances g,(, ) (see
Tal?le 2). The distance 0:(+,-)is defined by formula (3), and the Marczewski-
Steinhaus distance between two sets is based on the measure u,() given
by formula (2). Families of edges are

By, ={{1, 2}, {3}, {4, 5,10, 11, 12, 13, 15}, {6}, {7}, {8}, {9}, {14},
{16, 17, 18, 19}, {20}, {21}, {22}, {23}},

By, =1{1,2,3,4,5,6,7,10,11, 12,13, 15}, {8}, {9},
14,16, 17, 18, 19, 22}, {20}, {21}, {23}},
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B, ={{1,2,3,4,5,6,1,8,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22},
o, e, |

g = {{1,2}, {3}, {4, 8}, {5, 12}, {6}, {7}, {8}, {9}, {10, 11, 12, 13, 15},
{14}, {16, 17}, {16, 18, 19}, {20}, {21}, {22}, {23},

Eg, = {{1,2, 4,5, 17,10, 11, 12, 13, 15}, {2, 3}, {5, 6}, {8}, {9},
{14, 16, 17, 18, 19}, {18, 22}, {20}, {21}, {23}},

Es, = {{1,2,4,5,6,7, 8, 10,11, 12, 13, 15}, {2, 3}, {9},
{14,15, 16, 17, 18, 19}, {18, 20}, {18, 22}, {20, 21}, {23}}.

TABLE 2. Distances g, (-, *) between cluster analysis

methods
, _[11 Az Aa Bl Bg
A, | .666
A4, | .800 .690
B, | .500 150 .857
B, .700 500 738 .700
B, .708 875 .666 .750 .708

Analysis of the table of these distances leads to the conclusion that
critical levels, which play important roles in forming structures of the
representing graph, are more decisive in establishing the results than
methods A and B themselves.

3.2. Hierarchical clustering. Results of hierarchical clustering methods,
both agglomerative and divisive, can be represented by a rooted tree.
For example, in an agglomerative method, n objects are treated first
as single one-element clusters (terminal vertices in the tree), then the
two most similar are merged together forming a new cluster (non-terminal
vertex in the tree), and so on. The process is completed, in » —1 consecu-
tive steps, when all objects form one cluster (root of the tree). A similar
process is involved in finding groups in divisive clustering methods.

As an illustration of a possible application of the proposed distance
0:(+, *) between directed rooted trees, we have analyzed results of grouping
of 12 goil samples from different parts of Poland, described by 9 charac-
teristics mainly of chemical type, by the use of 6 agglomerative hierarch-
ical clustering methods. The data and the computer algorithm of these
methods are presented with more details in the papers by Karonski and
Calinski [4], [5], and Wishart [10]. The methods applied to group the
data are those of

I. nearest neighbour,
IT. furthest neighbour,
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I1T. median,

IV. centroid,

V. group average,

VI. Ward’s.

The obtained trees are presented in Figs. 3-6. The results, if we con-
sider only the tree representation, for furthest neighbour, group average
and Ward’s methods are identical.

We have applied the distance p,(-, -) given by formula (4) using the
Marczewski-Steinhaus distance between two edges of the appropriate
hypergraph based on the measure yu.(-) (see formula (2)). The obtained
distances are presented in Table 3 and indicate no major difference be-
tween the results of grouping with these 6 methods.

TABLE 3. Distances g,(, -) between
4 methods of hierarchical clustering

[ I II III
II .0826
I1I .0923 .1584
IV .0165 .0826 0758
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M. KARONSKI (Gainesville, Florida) i Z. PALKA (Poznan)

0 ODLEGLOSCI TYPU MARCZEWSKIEGO-STEINHAUSA
MIEDZY HIPERGRAFAMI

STRESZCZENIE

W pracy wprowadza sie przestrzen metryezng dla hipergraféw opartych na tym
samym zbiorze wierzcholkéw. W szczegélnosei rozpatrzono hipergrafy generowane
przez drzewa zorientowane, majace identyczny zbiér wierzchotké6w wiszacych. Jako
Podstawe rozwazan przyjeto odleglosé miedzy dwoma zbiorami, zaproponowang przez
Marczewskiego i Steinhausa. Pokazano takze, ze hipergrafy moga odzwierciedlaé
grupowanie obiektéw za pomoeg réznych metod analizy skupien. Podano przyktad
Poréwnania réznych metod grupowania.



