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1. Introduction. Let

f(s) = D) a,exp(si,),

n=1

logn

where 8 = o+4t, A, > 4,, 4,20, liml, = oo and limsup =0,

n—00 n—00
represent an entire function. Set

M(o) = lub. |flo+t)l; p(o) = max {|a,|exp(od,)}

—oo<Li<oo n=1

and let N (o) denote the rank of the maximum term (o). The Ritt order ¢
and lower order A are defined by '

lim S0P loglogM(s) o

(1.1) 0—>00 inf g A’

It is known that for a function of finite order [4],
(1.2) log M (o) ~ log u (o).

For funetions of zero order, the logarithmic order ¢ and lower loga-
rithmic order 4, [1], are defined by

. sup loglogM(s)
1.3 lim, . —————— =°F%,
(1.3) a..% inf  loge 7

For 1< ¢ < oo, we define type and lower type, [2], by

. sup log M (o) _T’
04 It @ i

and call 7 and # logarithmic type and lower logarithmic type respectively.
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We also define the logarithmic growth numbers, [3], by

) y
lim 59 2y _ Y

(1.5) lim o = 5

Further, let

. sup logu(s) ¢
1.6 lim ., ——- = _,
( ) a—ro0 inf Ul‘l-N(g) d

In view of (1.2) we can write

(1.7) jim SUp logu(o) _ T

0-»00 inf o? t )
It is known that, [2],
. A, .
(1.8) lim sup - N
— ogla, | ”]
[(e—l) &
and for A,~ 2,
A _
(1.9) liminf " —y < et
n—>00 _ log!a’ |._Ql/1n]
[(9—1) "

logla,/a,. |

Further, if
’ (1n+l - ln)

form a non-decreasing function of », then

(1.10) liminf A

n—00 1 =
- log |a, |~
[(e—l) "

](6—1) > ot

In this paper we obtain some relations between the constants defined
above. We derive formulae for logarithmic type, lower logarithmic type
and logarithmic numbers in terms of the ratio of consecutive coefficients
{a,}. We shall always take 1< p << oo. Symbols like ¢y, %, etc. denote
arbitrary, non-zero finite constants which, in general, will be different
on different occasions.

2. We prove the following

THEOREM 1. The constants T,1; 7,35 as defined in (1.4) and (1.5)
satisfy the relations:

(2.1) <ot < 8le—(e—1)(§/PHe-n]< 7,
o7 — 7@ _

(2.2) 5< 7[3’_’ ”] <eT<7.
07—9
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Dirichlet series

Proof. We know that for functions of finite order, [4],

(2.3) logu(e) = logu(oy)+ f A @, o0=0y>0.
%
Let K > 1. Consider
cﬂKlIE
(2.4) mmm%=mmm+fmwt

oKlle

By (1.5), we have for any ¢ > 0 and for all o > o,(t) = gy,

(2.5) (5— 8) O'(E_l) < AN(U) < ('?‘l' 3) O'(E_l).

Since Ay, is a non-decreasing function of o, we have

logu(a") < 01y + T 6 4 iy o (K -1

for all ¢ > ¢,. Dividing by (cKe)-and taking limits as ¢ - oo, we get

- S(Iclje
(2.6) T<-L 4 L(E—_—l) ,
Ko Kue
(2.7) jo P AR
. = K_e_ Kl,a .

Taking K = 1 in (2.6) and K = (5/8)4¢-) in (2.7), we get
eT<j and @f<3le—(e—1)(3/7""].

Again from (2.4) and the left-hand inequality of (2.5), we get

5 j(EYE-1)

(2.8)

(2.10) 1> 5 S
. >4 -
Taking
= e
K — [_9’_' 5]
ej—7

in (2.9) and K =1 in (2.10) we get

— -1
(2.11) oT> 7[21_ ;] and i 9.

Annales Polonici Mathematici XXIV
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It can be very easily be seen that

oy— §e-n o ]
?[57—5] >85 and §>=8[e—(e—1)(5/yY 1.

Hence combining (2.8) and (2.11) we get (2.1) and (2.2). Thus Theorem 1
follows.

Remark. We get from (2.8) and (2.11).
(2.12) d<et<eT <7,
which is already known [3].

THEOREM 2. For the constanis 7, 8;¢, d as defined in (1.5) and (1.6),
we have

(2.13) ?

s o
= :g d < C g hr—yeul
ey ed
Proof. We infer from (2.3) and (2.5) that for ¢ > 0 and for all ¢ > o,,

logu(e) < O(1)+ (”JQ“ o &,

or,

lo 7 @
gio) _ iy T+ oY

o N(0) e AN(,,)

Taking limits as ¢ — oo, we get
1 7 (e-1
limsup 0g(a) glhmsupf :
a—>00 a_lN(g) @  osm }*N(a)
or ¢ < j/es.

Similarly, starting from (2.3) and using the left-hand inequality
in (2.5), we get 5/o7 < d. Combining the two inequalities, we get the result.

THEOREM 3. (i) If 0<T < oo, then logu(o) ~To® implies that
) ~ 0Ta(-1) and conversely.

(i) 0<I<T< oo implies 0 < < §< oo and conversely.

Proof of (i). Let Ay, ~ ¢T¢@". Then

i SUP AN _
?_{2 inf ge-1 oT’,

or, = 3 =¢7. Hence from (2.12) we get { =T and consequently
log u(e) ~ Ta®. Conversely, let logu(s) ~ To?. For k = 147, n> 0, we
have

akl/Q_

Ao (K1) > [ dyqdt

= log u(ok'?)—log u(o)
~ T[(ok'*)— o*+ 0(c%)]



Dirichlet series 183

or _
z'N(aklli) T(k—l'l' 0(1))
(lela)ﬁ—l (k”ﬁ—l) ke-1ie?

or
o s }'N(akl/a) T(k—l)
Hmint eyt = (k_1) 5@
Since # may be taken arbitrarily small,
E—1 -
[h— ke~ ¢

Hence we get &> oT. Similarly, taking ¥k =1—#, 1> 5> 0, and

-4
considering the integral fl Aywydt, we get 7 <eT. Thus combining
oklle
the two inequalities we get 5 = & = e7. Hence Ay, ~ ¢Tc@? and (i)
follows.
Proof of (ii). We observe that, by (2.12), { = 0 implies § = 0 and
T = oo implies 7 = oo. Conversely, suppose d = 0. Then ¢ = 0. Indeed,
t> 0 gives 7> Kof from (2.7), which is a contradiction since K is arbi-
trary in (2.7). Similarly 5 = co implies T = co. The fact that 9 = &
implies 77 =7 and conversely follows from (i). Hence (ii) follows and
this completes the proof of Theorem 3.

3. Now we shall derive formulae for logarithmic type and lower
logarithmic type in terms of the ratio of consecutive coefficients. We
prove

THEOREM 4. Let f(s) = D a,exp(si,) be an entire function of loga-
n=1

rithmic order @ (1< @< oo) and of logarithmic type T, and lower loga-
rithmic type t. If

(i) Ap ~ ]'n+1
and
n—1
3 lk'H i
(i mZ Balbma— ) ~ 3= (k> 0,m>1),
_'no
we have,
(3.1)
A —
liminf N ey <e<er

n—>o00 1

An

< limsup . IR
1Oglan/%+1l]

n—o00

(Z'n+l - z'n)
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Proof. Let

L eglafanl|
ogla,/a, _
i SOP [(ln+1~l7.) s +1] @
noo i0E A B

Let us take f > 0, a < oo. Then for £ > 0 and all n > n,

[ st I]@_l)
——logla,/a,
(Ans1— ) o

< A

(3.2) (B—¢)

or

< (a+e)

[(B— &) AV E D (A s — L) < 10 |/ )
< @+ &) AV (A1 — A)

for all m > n,. Writing the above inequalities for m = ny, n,+1, ...,
n—1, and adding them, we get

n-1
(B— &)@ 3 BN (4,1 — 4y) < logla, [a,]

m=no
n—1
<@+ DA (g — )
m=mngy

or, using (ii), we have

o
< (@t gen 2
e/(e—1)

(B— e)H@-1 zele-1)
e/(e—1)

L

<log

n

for all » > n,. Hence we have, on taking limits as n — oo,

[ - (e-1)
gy logla ]
. sup L(e—1) _
3.3 < lim <a,
If f =0 or @ = oo, the above inequalities are obvious. If § = oo,
then @ = oo and (3.3) follows by taking an arbitrarily large number in
place of (f— ¢) in (3.2). Similarly for the case @ = 0. Finally we get (3.1)
on combining (1.8), (1.9) and (3.3). This proves Theorem 4.

Remark. If f(s) = ) exp(sn)/exp(n®® V), 1 < a< oo, then it can
n=1

easily be seen that f(s) is an entire function of logarithmic order a and
inequalities (3.1) are the best possible.

Next we prove



Dirichlet series 1556

THEOREM 5. Let f(s) = ) a,exp(sd,) be dan entire function of loga-

n=1

rithmic order ¢ (1 <0< o) and logarithmic type T. Further, let

n-1 k41
) ;‘zwmﬂ—zm) ~r E>0,m>1)
and ’
. log|a,/ay, 1|
ii =2l Pet1l
) =
form a non-decreasing function of n for m = ny,. Then,
e A
(3.4) oT < limsup L &=
e FrEE Y log ]an/a"n+1|]
(}"n+1_)"n)

@n__
<= T eoT .
(e—l) o<t

Proof. Let .
: A _
e 1 ] -
= ogla,|”
[(e—l) gl ]
‘l/)(%) = ]-Ogla’n/a’n+1|/(ln+l_]'n)'
For given &> 0, we have
A1z < (A+ s)"@_’)(ail) logla,|”! for m > my(e) = my,
or ~
(e—-1) ~1/(g-1) 42/@-1)
la,| <exp| — - (4+¢) A2 for n > n,
or
log |a,,| + log Imtr| 4 flog|-2n
O, n—1
< — (e ;1) (A+ s)—ll(ﬁ—l)l'é,;/(ﬁ—l)’ m > n.
Since y(m) is non-decreasing function, we have
51 o
10g | — Ap)p(n—1) < — A (4 -+ o) ED G
or

o—

;_n ) (e-1) ;_ﬂ_;m (-1
[w(n—l)]@-‘><( 1) (A+”’( ,1,,) (1o(2)-
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Since yp(n—1) < y(n), taking limits as n — oo,

. A, o \@-1
= [ - log|ay,/a |](§_]) ) (E—l) 4
(Ant1—4r) o

‘The result follows in view of (1.8), (3.1) and the fact that 111/
< ¢'® for 0 < & < co. This completes the proof of Theorem 5.

THEOREM 6. Let f(s) = D a,exp(sd,) be an entire function of loga-

n=1
rithmic order @ (1 < @ < oo) having logarithmic growth numbers 5 and 3.

Further, suppose that (i) Jy ~ iyyyy (i) 10g1a,/a,, (s, —4,) form an
increasing function of n. Then

(3.5) lim 5°P A

oo 1NE [ 1 log|a,/a Cht
o]
(Any1—An) e

Proof. By (1.5), for any ¢> 0 and all ¢ > o,(¢) = gy,

Il
Wil <21

(3.6) By < MO (544,

ol)

log Ian/an+1|
‘ zn+1_;'n
term is maximum for Rls = o if and only if 4, = Ay, for
logla’n—l/a’nl o< - logla’n/ +l|

ﬂ‘n—ln—l ( n+l n)

Hence (3.6) and (3.7) give

1 (e-1)
B8 (oG loelana]

Since form an increasing function of n, so the =n-th

(3.7)

N
(e-1)
<A, < (74 5)[m loglan/an+ll]

for all n > n,. Since 1,_, ~ 4,, we get, on taking limits, the inequalities

(3.9) 5 < liminf A —
i [m 10g|“n/“n+1|]

(3.10) 7 = limsup #n =
e [m logl%/“nﬂl]

which obviously hold for § = 0 and § = oo. If § = oo, then we get (3.9)
by taking an arbitrary large number in place of (§— ¢) in (3.6). Similarly
we get (3.10) for y =0,
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Again, from (1.5) we have Ay, < (5+¢)o® ) for a sequence of
values of ¢ = 0,, 0,, ..., tending to infinity. So by (3.7), corresponding
to those {o¢,}, we get

loglan/an+l| (-1
S . LN
(7 -(ln+1_ﬂ'n)
or
A
1 @=-0 < (5+ G)
I:(’In+1_ n) +
for a sequence of values of n tending to infinity. Hence
A
(3.11) liminf = — < 4.
0o [ 1 loga,/a l](o )
S — o n
Gugr—An) 0 ne2
Similarly, we get
A
(3.12) lim sup =

n—o00

[ (e-1) =7
1o |, a, I]
(ﬂn_l_l—/‘ln) g / +1

Combining inequalities (3.9) to (3.12), we get (3.5) and Theorem 6
follows.

4. AppLICATIONS. We give here two results which follow as direct
consequences of the theorems proved before. We say that an entire fune-
tion of logarithmic order ¢ (1 < @ < o0), is of perfectly logarithmic linear
growth if and only if 0 <i =T < oo.

COROLLARY 1. Let f(s) = D a,exp(si,) be an entire function of

n=1

logarithmic order ¢ (1 < @ << o). Suppose
(1) Ay ~ Apys

and
1
(ii) w form an increasing funmction of n.
()'n+1_2'n)
Then f(s) is of perfectly logarithmic linear growth if and only if
A e
(4.1) lim d oT.

. [ 1 = -
| ———1ogla,/a ]
(ﬂ'n+1—ln) / mH
Proof. From Theorem 3 (i) it follows that # = T implies § = § = T
and conversely. This result combined with (3.5) gives (4.1) and the result
follows.
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COROLLARY 2. Let f(s) = Y a@,exp(sd,) be an entire function of
1

n=

logarithmic order g (1 < ¢ < o) and suppose that
() 4p ~ Anyrs
lOg Ia’n/ani-ll

(ii) form an increasing function of n.
(}'n+1—}‘n)
If
liminf A
0< f_l.:., [ 1 Jog| lm](a—l)
= ogla,| ¢
(e—1) &%
<l P
R log[a.[-#a] =%
—_ ”
then
L A,
°<hf_‘,:§‘f 1 logla,/ l(a—n"
———— logla,/a
[(zn+1—an) ¢ "“]
<l A
< limsup oy < .

@,

R0 [; log ]
(Anr1— 45) LS
and conversely.
Proof. The result follows in view of (3.5) and Theorem 3 (ii), namely
the result that 0 << 7T < oo implies 0 < 6 < 7< oo and conversely.

Finally, I wish to thank Prof. R. S. L. Srivastava and Dr. O. P. Juneja
for their help and guidance.
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