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ON THE DEGREE OF ASYMMETRY
IN THE TRAVELLING SALESMAN PROBLEM

_ The distance matrix of the travelling salesman problem is changed by
Suitable equivalence transformations in such a way that it becomes
Eseudosymmetric. This fact is exploited algorithmically in order to obtain
800d” approximation tours for the asymmetric travelling salesman problem.
A simple example shows that the given bounds are tight.

1. Introduction. The travelling salesman problem, a well-known
COmbinatorial optimization problem, can be described as follows: Consider n
towns. Find a closed guided tour which visits every town exactly once and
the total length of which is minimum. Denote the length of a tour T by
V(T). Then the travelling salesman problem is uniquely defined if a distance
Matrix C = (¢ijk.j=1....n is given, where the value of ¢;; denotes the “distance™
Tom town i to town j. B

Several authors ([1], [3], [4] and [5]) solve this problem by
apprOXimation, i.e. they find a tour T, which approximates an optimum

appr
'our T,  in the sense that the inequality

(b V(T < AV(T,,)

holds with 1 > 1. Here, 4 depend on the number of cities n and also on an
algorithm, : |
Without any assumptions on the distance matrix C the computation of
a tour T,  satisfying (1) is as difficult as the computation of a tour T, (cf.
[103). 1f the matrix C fulfils the triangle inequality

Ppr

C; Scyte; for alli,j, k with i#j, i#k and j #k,

tl.le“_ there exist values A and corresponding polynomial-time algorithms
Yielding a tour T which satisfies (1). <

b4 . appt - . - .
It is well known that asymmetric instances of the problem (i.e. those in

Which the distance matrix C is asymmetric) have a greater degree of difficulty
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with respect to the construction of approximate tours than symmetric ones.
The purpose of this paper consists in somewhat reducing this difficuity.

2. An equivalence transformation. Let us define ¢ and ¢; as follows

n
Gi=Y ¢ and &:=Y ¢;, i=1,..,n
j_= ]: i=
J#i i
Definition. A matrix C is called pseudosymmetric, if
=¢ for i=1,...,n
Now, the following transformation is considered:
(2) , c,fj:=cij—u,-+uj, i,j=1,...,n.
The transformation (2) does not change the length of a tour and if the matrix
C fulfils the triangle inequality, then .also matrix C’ does. Moreover, we have
LemMma 1. Every quadratic matrix C can be transformed into a
pseudosymmetric matrix C* by transformations of the form (2).
Proof. Let

n
Q) := Y (cj—w+u;—cj+u—u)?.
ij=1
{2

If o*)<o@) holds for all vectors u, then the matrix C* is
pseudosymmetric, where

. — %* *
ci=cy—uX+ul.

Now let us prove this proposition. In order to achieve a contradiction,
assume that C* is not pseudosymmetric. Without loss of generality, let
Cl #* Cl and deﬁne

n

V(u):= 3 (ch—chi+2u,)? = Y (e +ct) +duy (T —ch) +4ul.

i=2 i=2
With uj = —4(ct —¢?) we obtain
¥ (uy) <y (0).
This is a contradiction with the optimality of u*.

The function ¢ is convex and quadratic, thus u* is a solution vector of
the system

Vo(u) =
which may be written in the form

n—1 -1 _
L U= '2L(£1—C1)]
-1 n—1 %(gu_&_n) .
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Let
*:=max {cf/ci: i,j=1,...,n, i #j, cf #0}.
We have ' | |

. LeMMA 2. If the matrix C* is pseudosymmetric and satisfies the triangle
thequality, then the following relations hold:

(a) o* < n- 1, '

b) c>0ij=1,...,n i#}j

(©) if ¢k =0 for a certain pair of indices i, j with i +# j, then the initial
Problem is equivalent to a problem with n—1 towns.

‘ Proof. (a) By the triangle inequality we have cE<ch+cfforallij, k
With .i #Jj, i # k and j # k. The summation over all indices j such that j #i
and j # k yields

-k <=2 ch+c —ci
and, consequently,
ci S(n—1)ck+cf—ct.

The matrix C* can be modified by a suitable permutation of rows and
Columns in such a way that ¢* < ... <c¥. Thus

g <(n—-1)ck for all k <i.
By transposing the matrix C* and using the equality c* = ¥, we get
i <(n-1)ck for all k>i.

Thus part (a) is proved.
- (b) Obviously, ¢} < c¥,+ck+ck. Putting k =i, we have

0<ct +c} =nct,,

Which was to be proved.

(c) If ¢ =0 then c =0 follows from (a). Furthermore, it is easy to
show that |

ck=ch and ch=ck for all k with ki and k #j.

?Iow We delete the row i and the column j of matrix C*, i.e. we integrate the
OWns i and j into one. m |
Let us define the distance matrix D as follows:

@) dy:=1 for all i,j with i <j,
d;:=0 for all i,j with i>j.

ObViOUSly,.matrix D fulfils the triangle inequality.
Remarks. 1. If the triangle inequality does not hold, then (a) or (b)
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may or may not be true, as the following example shows:

C:=|0 = 0|, then C*=E 2 * 1

0 0 = 1 -1 *

2. If T is a tour, then we denote by T the tour which goes in the,
opposite direction. For the special case where V(T) = V(T) for all tours 7, it
was recognized already in [11] that there exists a vector u* so that C* is

symmetric. The transformation presented here yields the same result for this
particular case. :

3. Let T be an arbitrary tour and let u, be defined by the relation
V(T) = pu, V(T). Then there exists a u such that ¢ij = py € holds for all pairs
i, j where the path i—j is contained in T. Consequently, ¢* > M.

If now V(T) < p, V(T) for all tours T and ‘some y,, then g* < u, may
not be true in general, as the following example demonstrates:

Let ‘
ITx 21
C f= | 1 .
111 =
Consequently,
1] * 10 5
C* = — 8 * 7 .
6 7 5 =

For this example we have u, = 4/3, but o* = 7/5.
These investigations can be used to find “good” approximate tours for
the asymmetric travelling salesman problem.

3. The asymmetric case. Christofides [3] presented an: algorithm fof
which A, = 1.5 holds if the distance matrix C is symmetric and the triangle
inequality is fulfilled. If the matrix C fulfils the triangle inequality and if it is
not necessarily symmetric but if '

(4) 7 Cij S OCi _
holds for. all i, j with i # j, then in [4] this algorithm was modified so thaf
;":ls : I'SQ'-

The example given by (3) shows that ¢ may not be bounded even if the
triangle inequality and the non-negativity requirement are met. The indicate
transformation (2) therefore appears to be advantageous since g* < ¢ and
e* < n—1, as was shown in Lemma 1. The procedure from [4] will be he
substantially” generalized” o
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Algorithm

S1: Calculate F:= C+CT.

S2: Determine with respect to matrix F an approximation tour T, .
The matrix F is obviously symmetric and fulfils the triangle inequality if

C does s0. An arbitrary algorithm for constructing a tour T, can be applied

Which possesses an estimation constant A, if F fulfils the triangle inequality.

Now the question arises as to the value of the constant A, with respect

to the matrix C.

T LemMMa 3. Let TE, be an optimal tour with respect to the matrix F and let

appr D€ a tour with respect to matrix F with
Ve(Tpp) < 45 V(T

Let T, be an optimal tour with respect to matrix C, let Vg(T,,) = EVe(T,,)
and let

r-min { ¥ (T;ppr)s Vel 'Eppr) } = max Ve (Ta‘lppf)’ Ve( tppr) -
Then the inequality

- 1+¢
min{l/(.'(,];ppr)’ I/E'(T:\ppr)} S 1+r)"s V'C(Tc‘)pt)
holds.

Proof. Clearly,
A+min (Vo (T Ve Topp)} = Ve Topp) < A Ve (Thyy)
<A Ve (T) = A (Ve T+ Ve T)) = (148 Ve (T,

from which the statement can be derived. m
- “The values ¢ and r in Lemma 3 are unknown, in general. However,
$<e* and ¢ > 1 always hold. By putting £ = ¢* and r = 1, we obtain

A = 3(@* +1) A,

The algorithm described above has the following two advahtages:
. L 3(e*+1) < ¢* always holds. Therefore, the estimation obtained here
'S at least as good as that in [4].

2. No special algorithms are needed for the asymmetric problems.

4. Difficulties in the asymmetric case. It is known that the asymmetric
Problem can be solved more easily than the symmetric one, but the
4Symmetric problem has a greater degree of difficulty with respect to the
onstruction of approximate tours than symmetric ones. The following
lemma confirms this fact.

Lemma 4. Let C be a matrix fulfilling the triangle inequality, and let T,,

€-an optimal tour. Then there always exists a tour T, T# T,,, such that:
@) V(1) <2v(T,,),
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b) V(Y < (1 +2/m)V(T,) if C is symmetric,
(c) the inequalities (a) and (b) cannot be improved.

Proof. The inequality (b) is proved in [9]. The example given by (3) shows
that (a) is tight. '

Now, let us prove (a). Without loss of generality we may assume that
T.=(,2,...,m and T=(1,3,2,4,5, ..., n with

C23+Caz =Min{cy,+cCpy, vy +Cirrt i=1,..,n=1},
Then

V(D= V(T,) = ciatcsptcra—C€12—C33—Caq
holds. From ¢;3 < ¢;5+¢53 and c¢,4 < ¢33+C34 it follows that
1 "
V(D= V(T < caste32 < (VL) + V(1))

<

b~ I

(V(T+(n=DV(T)) = V(T,,).

Thus the statement is proved. ®

5. Concluding remarks. To every distance matrix C an equivalent
pseudosymmetric distance matrix C* is assigned. The value g* can be
interpreted as the measure of the violation of symmetry. If the distance
matrix C fulfils the triangle inequality, then ¢* < n—1. For many practical
problems ¢* ~ 2 has been obtained. For these problems,

L.~ 1.54,.

If C is not symmetric then in [7] C is changed into a matrix C such that C
is symmetric. The main difficulty in this approach is the following:
Unfortunately, not all matrices € do fulfil the triangle inequality.

The author is indebted tb the referee for valuable suggestions and to Dr.
B. Legler and Dr. B. Luderer for their valuable remarks.
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