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Introduction. Let G be a locally compact group, 1 < p < x and 4,(G)
be the Banach algebra of functions f on G which can be represented as

f=Yu,=*v,,

where
u,e I’ (G), v,eL,(G) (1/p+1/p'=1) with Y |lul, llval, < c,

with norm as the infimum of the last expression over all such representa-
tions of f (see the following notations). Let PM,(G) be the dual Banach
space of 4,.

We study in this paper containment and density properties of some
Banach subalgebras (subspaces) of PM,, some of which correspond, in case
p =2 and G is abelian, to Co(G), AP(G) [WAP(G)] (UC(G)}, C(G), L=(G),
the usual algebras of continuous bounded functions on G: which tend to 0 at
oo, are [weakly] almost periodic, |uniformly continuous} or measurable
(mod. ae. equivalence). These algebras (subspaces) will be denoted for
arbitrary G and 1 <p <o by PF,(G), AP,(G), W,(G), UC,(G), C,(G),
PM ,(G).

The results obtained in this paper improve results obtained by Dunkl
and Ramirez [4]}-[6] and by this author [9]}-[11] and recent results of
Ching Chou [3] (all obtained for p =2). We point out that C* algebra
method which worked in some cases for p = 2 do not usually work for p # 2
(see for example Theorems 16, 17).

A combination of results obtained in this paper yields the following

THEOREM. For arbitrary G and 1 <p < oC:
PF,c AP,+ M, < W,nUC,cUC,=C,c PM,

(see the following notations).

We are unable to prove that W, = UC, even for discrete nonamenable
G and p =2, even though W, = UC, holds for amenable G.
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We improve hereby, in Theorems 16, 17, results of ours ([9]-[11]) and
weaker versions of recent results of Ching Chou [3], Corollary 3.7 and
Theorem 3.8 (obtained in [3] for p = 2, using somewhat difficult C* algebra
methods) namely:

THEOREM 16. Let G be second countable, 1 < p < 0. If for some norm
separable subspace X — PM, and some open neighborhood V of the unit e

UC,(G) < normcl {W,(G)+ X + L}

where Ly = {Te PM,; suppT< G ~ V) then G is discrete(").
If G is discrete then moreover UC, < AP,.

THEOREM 17. Let G be second countable, 1 < p < o0, K = A,(G) convex,
T,< PM, and

A= w*clK}n{yePM}; y(u @) =ule)y(p) for ueA,, ¢ PM,
and Yy(T,) =0 for n>

If A is norm separable or has w* exposed points then G is discrete( ).

We would like to thank hereby Ching Chou for his kindness in sending
us a preprint of his paper. ,

In Section 1 of this paper we deﬁne and show the existence of
topological invariant means on PM, improving thereby a result of Renaud
[18] (for p = 2). We show that the invariant mean is necessarily unique on
W,(G) and use this fact in the proof of Theorems 16, 17.

If G is abelian, PM,(G) can be identified with an algebra of bounded
measurable functions on G (see for example [16], p. 148). Elements of L*(G)
which belong to PM, are hard to characterize though. Diverse properties of
elements of PM,, for abelian G, are obtained in [14] and [20] and others.

For nonabelian G, PM, is idéntified with a nonabelian algebra of
operators on I” (which commute with convolution from the right). The
situation is more complicated in this case and theorems, which are easy for
the abelian case and p = 2, require a much more involved proof in the
general case (see for example Theorem 13).

Definitions and notations. Let G be a locally compact group with a fixed
left Haar measure A =dx and I’(G). 1 < p < o, the usual function spaces
with norm [|f]l, = ( [ 117 d4) Y2 if 1< p < and esssup|f] =If]l..

Let Coo(G), Co(G), UC(G), C(G) denote the spaces of complex
continuous functions on G with compact support, which tend to 0 at », are
two-sided uniformly continuous, or continuous functions resp. with || ||,
norm. AP(G) [WAP(G)] will denote the [weakly] almost periodic bounded
continuous functions on G. M(G) = Cy(G)* denotes the bounded Borel
complex measures on G with convolution as multiplication, see [15], vol. I,

(') Both these results have been definitively improved in our paper [21], Theorems 27 and
28, pp. 172-173.
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and with variation norm. If f, g are functions on G let f¥(x) =f(x"1),

@) =f(x"1), f*g(x) = [g(y~'x) f(y)dy whenever this makes sense.
If ] <p<oo then 4 (G) will denote the set of functions on G which

have a representation f = Z v, *u, , an absolutely and umformly convergent

sum where u,e L?, v,e 4 (w1th pl+q " =1), Y llull,llval, < oo, with the inf.
over the last expression, over all representations of f as above, being the
norm of f in A, (denoted by || f]| A,,)- We refer the reader to [12], [13] for

properties of the regular tauberian Banach algebras 4,. PM,(G) = A} will
denote the Banach space dual of 4,. We note that M (G) = PM, with {u, u)
= {udp for u in A,

Denote B) = ‘ueC(G) uve A, for all veA,} with the norm ||ul|y
= sup llluvllAp, veAp, ||U||,4p =1}. Clearly, if ue A,, then ||uljy < ||u||Ap Our
BY is different from B, used in [13].

Note the module action of By on PM, and PM} its Banach space
dual: u-@, v) =<, uvd, <u-y, @)=Y, u- @) for ueBﬁ’, veA, o PM,,
YyePM}. We define then the operators t,;: A,— A, t,=(t)*: PM,
—-PM,, T,=tf¥: PM}—-PM}; by tv=u, t,o=u¢, TY=uy.

Clearly, ||u- ol < |lullslloll.
If Yis a space of functionals on X then (X, Y) will denote the weakest

topology on X which makes all y in Y continuous. If 7 is a topology on X
and K < X then t<clK is the t-closure of K in X.

1. Invariant means on PM,(G). In this section we show the existence of
invariant means on PM,(G) for any 1 < p < oc. The results improve results
of Renaud [18] and of ours [9].

Definition. Denote

=Y ePM;(G); Iyl =y () =1}
(the set of “means” on PM,(G)),

Sp = {ueB); |lully =u(e) = 1}
and
SA = lueAp) ”u“A = u(e) = 1)'

Note that S§ < S§ since |ully, < llully < llully, for ue4, < BY. If ueBM

YePMy, pcPM, let (u-y)(o) =y (u-¢).
Remark. If ue BY and Y e PM¥ and ¢e PM, then

lu-@ll < llullmllell  and  Jlu-yll < llully ¥l

ProrosiTION 1. S4 and S§ are convex sets and abelian semigroups (under
pointwise multiplication) and u-M, c M, for all ueS§.
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Proof. If u, veSE, 0 < a <1, then N
[au+(1—a)v](e) =1 < |jau+(1—a)v|jpy < 1

since |u(x)| < |lully for all ue BY and xeG. Similarly for S%.
Let now ueS§ and ye M,. Then

L=l = llullag W1 > Hlu- gl 2 @-9)(D) =Y @-1) =y uEe)=yU) =yl
Thus |lu-y|| = (u-y¥)(I) = 1. The rest is immediate.
Remarks. 1. If Q: A, — PM} = A}* is the canonical map then

O[Sl =M, since (Qu))=<l,u)=u(e=1= llulla, = 11Qull.
2. Let ¥V =V"! be such that eeV and A(V) < 0. Then

Lyl (x)=[1,(x" "1, (»dy = 2(xV V)< A(V).
Define ¢y (x) = A(V)"'[1, %1, (x)]. Then
0<op(x)<1 =9y(e) < ”‘pl’”A‘, SAW) Il = AV HA(Y) = 1.
Hence, for each such V, ¢, €S8%. (Thus M, # @) Furthermore
Ix;0p(x) £#0) < (x; xV AV #£0) <V

3. One can easily show that S§S% =S4 and, for yeM,, Shi-y =y
implies S§-y = .

ProposITION 2. There exists some Y€ M, such that u-\y =y for each u in
SB. (We write in this case S§-y =)

Proof. M, = {yePM%; |yl <1 =y ()} is clearly a w* compact
convex set and S§, is a commutative semigroup (under pointwise
multiplication) which acts as a semigroup of w* continuous affine operators
on PM7 by T,(¥) =u-y. In fact, T(T,¢) = (uv) ¢ = T, (y) where (uv)(x)
= u(x)v(x) for all x, and if t,: PM,— PM, is defined by r,¢ = u- ¢ then T,
=1, hence the w* continuity. By Proposition 1, TM,c M, if ueS§.

The Markov—Kakutani fixed point theorem ([7], p. 456) will imply now
that there is some Yoe My such that T,yo =u Yo =, for all u in Sj.

Remark. Let K, = w* closure of {aS%)} for fixed ae S§, or any other w*
compact convex ; T,; ue S§}-invariant subset of M,. Then there exists some y
in K, such that u-y =y for all u in S§.

ProPOSITION 3. Let Yy e M, be such that S§-yy = . If ue BY is such that
u=1 [u=0] on some neighborhood V of e then u-y =y [u-y =0].

Proof. Assume that u =1 on V. Let U be open such that U = U~!
and U2 c V. The function @ = @y =A(U)"'1y*1; of Remark 2 above
satisties @ed,, ¢()=1=|lpll,, so ¢eS§ and ¢ =0 off U?. Hence
u(x)(x) = @(x) for all x. Thus u-y =u-(¢-y¥) =(ue) -y = ¢-¥ =y, which
proves the first part. Assume now that ueBY and u=0 on V. Then
1—ueBY and 1-u=1o0n V. Hence ¢y =(1—-u)-y =y —u-y, ie. uy =0.
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Remark. This proposition expresses the fact that any S§-invariant ¢ in
M, has “support” included in every neighborhood of e.

PROPOSITION 4. Let e M, be such that S§yy = . Then for each ue BY,
uy =u(y.

Proof. Assume at first that ve 4,(G) is such that v(e) = 0. The set {e} is
a set of spectral synthesis for the algebra A,(G) (see [13], p. 91, Theorem B,
with H = [e}). Hence there exists a sequence v,e A, such that v, = 0 on some
neighborhood V, of e, v, has compact support and |jv,— || 4, 0. By
Proposition 3, v, ¥ = 0. But |jv-y|| = ||(v,—v) Y|l < ||v,,—u||,,p||¢|| — 0. Thus
vy =0 for any v in A, such that v(e) = 0.

Let now ue A, be such that u(e) = 1. Choose ve A, such that v =1 on
some neighborhood V of e. Then (u—v)-y =0 by the above. Thus u-y
=vy =y =u(e)y if u(e) =1 (hence clearly for any ueA4,).

Let ueB) be arbitrary. Choose ve A, such that v(e) = 1. Then uve A,
and (uv)(e) = u(e). Hence u-y = u-(v-y) = (uv) -y = (uv)(e)y = u(e)y, which
finishes this proof.

Definition. Let TIM,(G) = YyeMy u-y =u(e)y for all ue BY(G)}
be the set of topological invariant means on PM,(G).

THEOREM 5. For all G and 1 < p < x, TIM,(G) # @. Moreover, for any
convex w* compact |T,; ue Sg}-invariant subset K of M,, K n TIM,(G) # @.

Proof. Use the remark after Proposition 2 and Proposition 4.

Remark. That TIM,(G) # @ is a result of Renaud [18], p. 287, for an
easier proof see [9], p. 376.

We note that the proof for p # 2 is necessarily more complicated since
the C* algebra techniques are not available anymore. We note that we even
needed the fact that single point sets are sets of spectral synthesis in order to
prove that TIM ,,(G) # O, even though this is not needed in the proof for
p =2 given in [9], p. 376 (it is used though in [18], p. 287).

2. p-weakly almost periodic and p-uniformly continuous functionals on G.

Definition. We denote by W,(G) [AP,(G)] the linear space of all
@e PM, for which the operator u—u-¢ from A4,(G) to PM,(G) is
weakly compact [compact].

Remarks. If @eW,(G) [4P,(G)] and ueBY then u-@eW,(G)

[AP‘,(G)] as readily checked. Propositions 6, 7 below improve results of
Dunkl-Ramirez [6], p. 505.

ProPOSITION 6. WPA(CA;) and AP,,(G) are norm closed B:’ (G)-submodules of
PM, (G) and 1€ AP,(G) = W,(G).

Proof. It is routine to check that both are linear spaces. Assume that
0,eW,(G) [AP,(G)] and ll%-‘Pllm,,—’ 0 for some ¢ePM,. Then

sup ||t (@.— o, llvllAp < 1} - 0 thus ¢, — ¢ in the operator norm (from 4,
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to PM,). However uniform limits of weakly compact [compact] operators
are weakly compact [compact] [7], p. 483.

Note that u-I = u(e)I thus u — u-I has one-dimensional range. The rest
is immediate.

Remark. AP,(G) [W,(G)] coincides in the abelian case with the
[weakly] almost periodic continuous functions on G as shown by Dunk! and
Ramirez [6]. p. 503.

Remarks. M(G) can be considered as a subspace of PM,(G) = 4,(G)*
by

{u,g>=[gdu, for geA,.
Then

[<us g1 < 19l oo 11l (G) < lglla, I mearr -

Hence ||,u||m llullm@)- We also note the module action of A,(G) on

M(G) (in fact of BY(G)): If ueBY, ve A,(G) and pe M(G) then (v, u-p)
= ur, puy = [ v(udy). Thus u-pe M(G) is just the measure wudpu.

ProrosiTioN 7. M(G) < W,,(G'), hence || llpMp-closure of [M(G)] = WP(G).

Proof. We follow basically the proof of DunklRamirez [6], p. 505,
given there for the case p = 2. It is enough to show that for any probability
measure ue M(G) one has ue W,,(G). Define the map S: H = [2(G, dp)
— PM,(G) by: For ve A, and feH, <v, Sf) = [vf du. Then

1<v, SFI < ollall fll < Holleo 1S 1ler < el 1S 1

since 4 >0 and u(G) = 1. Thus Sf is a continuous linear functional on 4,
with ||Sf ||m < ||fllg- S is a continuous linear operator and hence by [7]
p. 422, is weakly continuous.

Let now {f,} < 4,(G), ||f,,||Ap < 1. Then || f,|lg < 1 and since the unit ball

of H is weakly sequentially compact there is a subsequence f, — h, weakly,
for some he H. But then Sf, — Sh in the weak topology of PM,. To finish

the proof of the theorem we will show that for fe 4,(G), Sf =f-u (module
action of 4, on PM,). In fact, if ve A, then <v, Sf> = [v(fdu) = v, f-p)
by the remark preceding this proposition. We have shown that {f-pu,
If1la, < 1} is a relatively weakly sequentially (hence relatively weakly) com-

pact subset of PM, and thus M(G) c W, (G). The fact that W,(G) is closed
implies the rest.

ProrposiTioN 8. I'(G) = AP,(G).
Proof. Clearly, I'(G) =« M(G) and if pel'(G) then

i) = Zlu(x)l and  |lullem, < lldllm)
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by the above. If ue A, then

up=udpcl'G) and |- pllpw, < lulla, lon,

by the definition of the module action. Thus the norm of the operator
u— u-u is dominated by llyllm

Any uel'(G) is an Il llm@y norm (and a fortiori || ||,.Mp) limit of finite
linear combinations Z ;d,, of point masses at x;. Since norm limits of

compact operators are compact, it is enough to prove that §, is a compact
operator for all aeG. Now {u-4,; llulla, < 1} < {«d,; || < 1! and the last is
a 1-dimensional bounded closed (hence compact) set. This finishes the proof.

Remark. It is proved in Dukl-Ramirez [5], p. 529, that if G is a

compact group such that {aeG; dima = [} is a finite set for each | =1, 2,
3,... (such as SU(2)) then PF,(G) = PM,-norm closure of
{L'(G)} = AP,(G). This is in marked contrast with the abelian case where
PF,(G) = Co(G) and Co(G) N AP,(G) = {0).

ProrosiTiON 9. There exists a unique Y e W, (G)* such that y(l) =1 and
Y (u- @) =u(e)y(p) for all ueBY.

Proof. Any yo,e TIM (G) restricted to W, (G) satisfies this condition.
Moreover ||yoll = 1. Keep now y,eTIM, (G) [4,(G)]** fixed and let
u, € Ap, ||u,||A 1 be such that for all @ePM, ¢(u)— Yo(p).
Then u,(e) = I(u )—»lﬁo(l) = 1.

Let wleW(G)* be such that y,(I)=1 and ¥, (u-¢) =u(e)y(¢) for
ueBM Let ¢ = yo(¢o) where poe W, (G). Then for each ueA, one has

(tu, ©0) () = (t, @o) (us) = Yo (1, o) = u(e)Yo(Po) = ule)c = (cl)(w).
Thus t, @o— cl in the w* topology of PM,. Since ¢o¢é W,(G) there is a

subnet t, @o— @€ PM, weakly (and a fortiori w*) in PM,. Thus ¢ =cl
and in particular we have Y1(tu, ®o) = ¥1(cl) =c=yo(po). However
V1t ®0) = ts,()¥1(00) = Y1 (@0) Thus ¥y (po) =¥o(po) and since ¢,

is arbltrary, ¥, coincides with the restriction of the fixed y,e TIM (G) to
W, (G) which finishes this proof.

ProrosiTion 10. If woe W, (G)* is the unique invariant mean of
Proposition 9 then Yo(p) = p e} for each ue M (G).

Proof. Let 0 < ue M(G). Choose, by the regularity of y, open sets with
compact closure ¥, = V,”! = G such that V%, < ¥, and u(V,) > u {e}. Let v,
= ¢y, be as in the Remarks before Proposition 2. Then v,(x) — 1, (x) for all
x, where V=V,. But 1, =1, ae. u. Thus v,— 1, ae. u; hence, for all
veA,, w,—v(e)l, ae p Let veA, Then

<U,, ‘v, U>— <# {e} 6e’ U> = I(UU,,—U(G) le)du - 0.
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Thus v,-u—p{e}d, in w*=a(PM,, A,). But M(G) < W,(G). Hence
o p; |lvll 4, S 1} is weakly relatively compact and it follows routinely that

v, u— pie}d, weakly = o(PM,, PM}). Thus

Yolu) = Yo(v, 1) — Yolu {e} 0c) = #{e}\/’(l) =u {e}.

Remark. If G is not discrete then yYo(u) =pfe} =0 for any
u=fdx (fe L' (G)). If PF,(G) denotes the norm closure of L' (G) in W,(G) it
follows that yo(¢) = O for all ¢e PF,. If G is abelian nondiscrete and p = 2
then PF,(G) = Co(G) and any invariant mean ¥, on L®(G) will satisfy
¥o(Co(G)) = 0 since G is not compact. We can state the

CoroLLARY 11. Yo [PF,] = 0 whenever G is not discrete.

Definition. Denote

C,(G) = lpe PM,; 09, +¢,pePF, if ¢,, ¢p,€PF,},

UC,(G) = {4,(G)- PM,(G)},

M,(G)=M(G), #(G)=I'(G) and PF,(G)=L(G)
where bar means here closure in || Ilmp-norm.

Remarks. (a) {4, PM,} = {u-¢; ueA,, ¢ PM,} is a linear space as
known and readily shown (see for example [9], p. 373).

(b) As known and readily seen UC, coincides with the PM, norm
closure of the set of Te PM, with compact support (for definition of support
see [12], p. 101 and 117). '

(c) If p=2 and G is abelian then C,(G), [UC,(G) = UC(G)}, {PF,(G)
= Co(G)} is the space of bounded continuous [uniformly continuous]
icontinuous vagishing at oo functions on G. .:I(Z(G") is just the sup norm
closure of B,(G) = B(G), a subalgebra of W,(G).

ProrosiTion 12. UC,(G), M, (G) and #3(G) are closed subalgebras and
By'-submodules of PM,, #,(G)<UC,(G)nW,(G) and #:(G) < UC,(G)
NAP,(G).

Proof. We show at first that UC, is an algebra. Let at first
f1./2€Cpo(G) have compact supports 4,, A, resp. Then f; +f,(x) =0 if
x¢A, A;. Let ve A, " Cyo(G) have support disjoint from A4, A,. Then

Sfirfy, 0) = [(firf)vdi=0 (4 is left Haar measure).

By [12], Corollary on p. 120 and p. 101 we have supp(f; *f;) = 4, 4,
where supp(f; */;) denotes here the support of f; f; as an element of PM,,.
Let now S, Te PM, have compact supports A, B and A,, B, be open sets
with compact closures such that A = 4,, B < B,. Let s,, t; be nets in Coo,
with supps, < 4,, suppt, < By, such that [lls,lll, < liSlll, and Ilicsll, < I Tlll,
and, for all fel”, |I(s,—$)fll,— 0 and |i(t,;— T) fll, = 0. Such nets can be
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found by [12], p. 117, Proposition 9. An immediate consequence of the
Corollary on p. 120 and of the remarks on p. 101 both of [12] implies that if
W, W,ePM,, suppW, cE (E closed) and W,— W in o(PM,, A, then
suppW c E. But <¢k*u, vd =<k, v*u” ) if kel!, vel”, uel? ([13], p. 153).
Hence for fixed «, s,*ty—s, T o(PM,, A, and strongly on I7. Thus
supps, T = A, B, . If we let now a vary then we get that suppST < A4, B,
which readily implies that UC,, is an algebra. Any Te UC,, is a norm limit of
elements u-S where ue A,n Coo and Se PM,. If ve BYf then v- T is again a
norm limit of such elements. If yue M(G) then v-pu is just vdu for ve BY.

As for the inclusion we note that if u, denotes the restriction of the
measure u to the compact K < G then for suitable K, we have ||l‘x,.-l‘||m,,
< llx, — Mm@ — O and clearly px e UC,(G). Propositions 6 and 7 imply
M, (G) = W,(G) while Proposition 8 implies that .#%(G) = AP,(G). Since
M(G) and ['(G) are B)-submodules so will .#,(G) and .45 (G).

Remark. It is not known for nonamenable G, whether W,,(G) < UC p(G)
(even for p = 2). For amenable G this inclusion holds true (Proposition 14).

If p =2 then .#,(G) is a C*-algebra (since u*e M(G) if ue M(G)) which
coincides with the || ||, -closure of B(G), in case G is abelian.

The following improves our result in [10], p. 64.

TueoreM 13. UC,(G) = C,(G) for any locally compact group G, C,(G) is
a closed subalgebra and A,(G) a submodule of PM,.

Proof. Let TeUC,, ¢ PF,. One has to show that T¢ and ¢T both
belong to PF,. Now A,Nn Cyo is norm dense in A, and 4,-PM, is norm
dense in UC,. There is hence a sequence u,e A, N Coo With |ju,  T—T ||m,,

— 0. But supp(u,-T) < (suppu,) nsupp T (see [12], p. 101 or p. 117, also
Corollary on p. 120 of [12]).

We can hence assume that supp T'is compact. Let V be a neighborhood
of e with compact closure and let 2 = V(supp T). Then, by [12], Proposition
9, p. 117, there is a net w,e Cyo(G) with suppw, = © such that for each f in
L? ||w,*f —Tfl|l,— O (ultra weak = o (PM,, A,) by [12], p. 116; compare
with [1], p. 91).

For he ! (G) let go(h): L* — L* be defined by

(eh)(f) = hxf.

Fix geCoo. We show that g(w,*g) and g(g+w,) are PM,-norm Cauchy
sequences. In fact if K =suppg, for each ve A, with ||| 4, S 1 one has

[<@[(wa—wp) ¥ g1, vl =] [ [(wa—wp) *g1(x)v(x)dx| < |I(wy— wg) xgll, lIvl].. C
QK
< C“(Wz_wﬂ)*g"p

(where C = 1(2-K)"?" and 4 is Haar measure) by the Holder inequality. But
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[(w,—wg) %gll, -0 with «, B, since geL, and the above estimate is
independent of ve A, with ||v]| 4, < 1. Thus g(w,*g) is a PM, norm Cauchy

net, and there is some T,e PM, such that ¢(w,*g)— T; in PM, norm.
However ¢(w, *g) — (T)(gg) strongly on I?. Thus T; =(T)(gg) and ¢(w, *g)
—+(T)(¢g) in PM, norm. But g(w,*g)eo(Coo) = PF,. Thus T[g(Cy)]
< PF,. But ¢(Cyo) is dense in PF,. Thus T(PF,) c PF,.

We still have to show that [o(Coo)] T< PF,.

_ 1
As well known, if v, w, geCoo and h~(x) = h(x" '), h* =Zh~ then

1/1\" 1 I*
(v,g*w)=<z(§> *U, w>=<v**[z(g)~J ,w>=<v**g‘, w)

= (v*, wxg~ ).
Hence, if ve A, N Cyo then for the net w, and g, chosen above we have

<0, go * (Wa—wp) )| = [<V*, (W, "‘Wp)*90~>|

:zxj.- . ((Wa —Wg) *go )(x)mv(x° Ddx|<

where C = |47 x,, -ll,» does not depend on ve Coo. But ||tfl ., < llvll,, and
(W, —we)*g~|l, = O with a, B, since g~ € Coo = L*. This shows that g(g *w,)

is a PM,-norm Cauchy sequence in ¢[Cyo] which readily implies that
[PF,]T < PF,. Note that A,-C,c UC, < C, by the first part.

CoRroLLARY. For arbitrary G
PF, = #,(G) = W,(G)nUC,(G) = UC,(G) = C,(G) = PM,
and  M(G) < AP, (G):

The following improves our result in [9], p. 374:
ProposiTION 14. Let G be an amenable locally compact group. Then

W,(G) < UC,(G) = normcl[4,(G): PM,(G)] = A,(G)- PM,(G).

Proof. As is well known A,(G) has an approximate identity e, with
lleJ] < 1. Let e W, (G) Then e,- ¢ — ¢ in the w* topology of PM,(G). But
by the definition of W(G) there exists a subnet €, such that €y Q- @
weakly (ie. in a(PM,,, PM3})).

Thus ¢ = ¢’ and since the weak and norm closures of 4,- PM, are the
same, one has W(G) cUC (G)

As for the equality UC (G) A,(G)- PM,(G) we note the following:
A,(G) is a Banach algebra with a bounded left approximate unit and
PM,(G) is a (left) Banach A,(G)-module as in [15], p. 263, (32.14). By
Cohen’s factorization theorem ([15], (32.22), p. 268) A,(G)- PM,(G) is norm
closed which finishes this proof.

”(wa_wﬂ) *g~”p”U”co -C
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Remark. If G is the discrete free group on 2 generators then
A,(G): PM,(G) is not closed. This is due to A. Figa-Talamanca (see [10],
p. 69). Question: Is W,(G) =< UC,(G) for arbitrary G? (P 1311)

CoOROLLARY. Let G be an amenable locally compact group. Then for all
l<p<

;, PF,(G) c AP,(G)+ PF,(G) = W,(G) = UC,(G) = C,(G) = PM,(G).

As remarked before PF,(G) = AP,(G) if G = SU(2) in marked difference
from the abelian case.

ProPoOSITION 15. (a) Let G be discrete. Then
PF,(G) = #}(G) = UC,(G) = C,(G) = AP,(G) = W,(G).

(b) If G is discrete and amenable then the inclusions in (a) become
equalities. Hence all -the above spaces are algebras in this case.

(¢) If G is compact then UC,=C, = PM,,.

Proof. (a) .€ PF, hence PF, = .#%(G) has identity. The definition of
C,,(G) together with Theorem 13 imply now that PF,=UC,=C,.
Proposition 8 yields that .#%(G) = AP&(G) c Wp(g).

(b) Proposition 14 shows that W,(G) = UC,(G) which together with (a)

¢ finishes the proof.

(c) 1€ A,(G) in this case and PM,=1-PM,c UC,c C, by Theo-
rem 13.

Remarks. If V=G is open, let L, be the w* closed space of all
@e PM, such that suppe < G ~ V (the complement of V in G) (see [12],
p- 119).

We improve now our Theorem 4 (a) in [10], p. 66, for the case that
G is second countable and a result of C. Chou [3] (see remarks after
Theorem 17):

THEOREM 16. Let G be second countable. If for some norm separable
subspace X = PM,(G) and some open neighborhood of the unit V

(%) UC,(G) < normcl {W,(G)+ X +L,)
then G is discrete. If G is discrete then UC,(G) < AP,(G) even, by Proposi-

tion 15.
.— Proof. We can and shall assume that ¥ is compact. Let ve S5 be such

'-fthat suppv = cl{x; v(x) # 0} = V. If peL, then suppv-¢ < suppvNsupp¢

=@ ([12], p. 118). Thus we have v-¢ =0 by [12], p. 101. Thus if v*
= {@pe PM,;v-¢ =0} then L, < v*. Hence (x) implies that

UC, < normcl{W,(G)+ X +v*}.

L7(G) is separable, hence so is 4,(G). Let {u,} be dense in S4 and denote

9 - Colloquium Mathematicum 52.1
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K =vS% < §%. Any @pev” will satisfy ¢ (K) = 0. Hence any ¥ in w*clK will
satisfy ¥ (@) =0 for all ¢ in v* (K is identified with its canonical image in
PM?).

Fix now some yoe{w*clK}n TIM p(G) (see the remark after
Proposition 2) and let {¢,} be norm dense in X. Let y,(¢p,) =a, and
consider the w* compact convex set

A={w*clK} N {yePM2; (6, ~IV**¥ =0, Y (@) =, n > 1)

where I': A, — A, is the identity and t;(u) = au for a, u in A,. Since (t, )*
=1,, it follows that any ¥ in A satisfies u-y = ¢ for all ue $5. If we S§ and
ueSY then w-y = (wu) -y = y. Thus A = TIM,(G) by Proposition 4. Clearly
Yoe A. We claim that A = {y,}. In fact let ¥, € A. Then ¥, =y, on X and
Y, (') =0 since Y, ew*clK. By Proposition 9 ¢, =y, on WP(G). Our
assumption implies now that y, = Y4 on UC,(G). If e PM,, choose ueS%.
Then ¥, (@) =Y, (u-9) = Yo(u- @) = Yo(p) since u-@eUC,. Thus ¥, = y,.

We apply now Corollary 1.3 on p. 21 of [8] and get that there exists a
sequence v,€ K = 8§ such that for all o PM,, ¢(v,) > Yo(¢). Thus v, is a
weak Cauchy sequence in

AR(G) = {ue A,(G); suppu c E} with E=V.

But by Lemma 18 it follows that A§(G) is weakly sequentlally complete for
any compact EcG.

There is hence some vy € A,(G) such that ¢(vo) = Yo (¢) for all pe PM,,.
Thus ¢ (wve) = @(v) for all ¢ in PM, and all w in S§, hence wyy, = vy. By
choosing we S% with support in a small neighborhood U of e we get that
vo(x) =0 if x e However vg(e)=1(vo) =yo(I)=1. Since voeAd, is
continuous, G is discrete.

The alert reader will have noticed that the above proof will yield a proof
for the following

THEOREM 17. Let G be second countable, K = A, convex, T,e PM, and
= {w*clK} n {y e TIM(G); ¥ (T)) = 0 for n> 1}.

If A+# O is norm separable or if A has w* exposed points then G is
discrete.

Proof. By Lemma 3 on p. 23 of [8] we can assume, by possibly addin'g
a countable set to the T,’s, that 4 has w* exposed points and by Corollary
1.3, p. 21, of [8] any such y, is necessarily a weak* sequential limit o
elements v, of K. If voeS4 has compact support then

@ (Vov,) = (Vo @)V, — Yo (o @) =Yo(9) for all ¢ in PM,.

Thus vov,— Yo in the w* topology of PM} and v,v,e A with compac
E = suppuvy. The rest is shown as in Theorem 16.
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Remarks. Theorem 17 is an improvement of a weaker version of
Theorem 3.8 of [3]. Chou displays there, for any given A # @ as above, a
linear isometry A of (I®)* into PM,(G)* = VN(G)* such that A(BN ~ N)
< A, whenever G is nondiscrete (and p = 2). It follows by Chou’s result that
for such 4 even card 4 > 2¢, while we are only able to show here that A4 is
not separable. Our result is however true for all 1 < p < oo and the heavy
C*-algebra machinery developed by Chou in Chapter II and used in Chapter
III of [3], to prove his result, is not available in our case anymore. A better
result than our Theorem 16 is obtained by Chou in [3], Corollary 3.7 again
for the case p = 2 and arbitrary G, using C*-algebra machinery (see footnote
on p. 120).

To complete the proof of Theorems 16, 17 we bring here a lemma,
whose proof improves a proof due to M. Cowling. The proof is very
gratefully acknowledged.

LEMMA 18. For any compact E€G, AE(G) = {ve A,(G); suppv c E} is
weakly sequentially complete.

Proof. If G is discrete, E is finite and A} is finite dimensional. We can
hence assume that G is not discrete.

Assume at first that G is second countable. Given fel?, geL”. Let

P(f®g)=g+f" = [f(y)g(xy)dy where f¥()=f(y"")
(see [12], p. 97). Consider f®g as a function on G xG. For feC(G) let
(Mf)(x, y) =f(yx~'). Then P[(f ®q) Mh] = hP(f®g) (see [2], p. 276) and
A,(G) = P(!®, LF).

Let U and V be open subsets of G with compact closure such that
A(U)" ' P(xy®yy) = 1 on E where A denotes Haar measure. For any he Ag,

A(U)™! P((MB) y®yxy) = h.
We have thus the following isomorphism of A into Y@L (G xG)y xy:
h— [Mh(xy®x)]e @,
(see [12], p. 98) and
Allhlla, < MRt @1l o o < Bllhlly, for some 4, B> 0.

This is the case since P is a contraction by [12], p. 98.

However I®LF is weakly sequentially complete, by Theorem 1 of [17].
Therefore, so is every closed subspace. This implies that Af is weakly
sequentially complete.

Routine arguments reduce the general case to the second countable case
(see [12], p. 106).
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