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Distributional solutions in information theory, I

by A. KamiNskr (Katowice), Pl. KANNAPPAN (Waterloo, Canada)
and J. MikusiNskI (Katowice)

Abstract. The measures directed divergence and inaccuracy are characterized
with the help of a functional equation, which is solved by means of distributions.

n -
1. Let P = (py, ..., p,) With p; > 0 and > p; = 1 be_a finite discrete
i=1
probability distribution. Let us consider another finite discrete probability
distribution @ = (¢, -.., ¢,) With ¢;>0, Y ¢, =1 such that there is
=0 ’

a 1-1 correspondence between the elements of P and @ given by their
iuffices. Then the measure of information directed divergence [10] or
snformation gain [13] is given by

Py -y Py \7"»1 P;
1 D = log —
(1) n(q“ - _tln) /), Piiog

and inaccuracy [9] is given by

(2) In (511: ’z;n) = - ,ﬁPiIOgQi-
ceey Qp

Remark 1. In (1) and (2) it is used that ¢; = 0 (or 1) implies p; = 0
(or 1) and 0-log®/, = 0 and the base of the logarithm is 2.

The quantities (1) and (2) have been characterized by using various
systems of postulates ([3], [4], [6]-[8], [12]). In this paper we are charac-
terizing (1) and (2) through a single functional equation, which is solved
by the method of differentiation, consequently by the theory of distri-
butions, along similar methods used in [2] to characterize Shannon’s
entropy.

Let K"(P||Q) (n=>2) be a system of functions defined on the sets
D,, where

D, = {(P,Q): Pi» 4:; = 0, 2?5 :jq‘. =1}
i=1 i=1
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and satisfying the following axioms:

(a,) K*(P||Q) is symmetric in (];"") (t=1,2,...,n),

(a,) K™ is continuous,
(8g) K (pl, m,pn) _ g1 (p1+p2,pa, ~-~,pn) n

iy «ovy Oy q1+ 95 43y -y 4y
P P:
| PrFDe PP
+(py+p.) K* ' * ' ’
q: q:

6G+a G-
whenever p, 4 p,, ¢, +¢, > 0.

THEOREM 1. If the functions K™ (n > 2) satisfy (a,), (as), and (a,), then

(3) E™P|1Q) = 4 D' plogp;+B D p;logy;,
i

i=1
where A and B are arbitrary constants.

Remark 2. It is easy to see (from the references cited) that (a,)
for n = 3 and K*® symmetric lead to the functional equation

u v
(4) F(w,y)+(1—w)F(1_m’ 1—y)

x Y
= F(u,?})+(l—1&) F(]_—u ,‘m),
where

_ 2 .’D,l—w
F(w7y) - K (y,l_y)’

and the solution of (4) by [5] with the use of (a,) results in (3). Here we
are using theory of distributions to achieve this result (). .

Analogously as in [2], Theorem 2 follows from a theorem on a single
function K, which we shall formulate below.
By using (a;) for n = 3, we get

1—p,0 1,0 1—
Ka (p7 .p7 )=K2(s )+.K2(p, p),

g,1—gq, 0 1,0 q,1—gq
3 (P,0,1—p) _.(p,1-—p 2(1,0
K (q,O,l—q) =K (q,l—q +pK 1,0 for 0<p,qg<1,

(1) See also A. Kaminski, PL Kaﬁnappan, A mote on some theorem in in-
formation theory, Bull. Acad. Polon. Sci. 25 (1977), p. 925-928.
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which by the use of (a,) for » = 3 results in Kz(i’ g) = 0. Thus
’
(5) Ks(Panyo) ___Kﬂ(f’npz)_
91y 92, 0 1y 92
Again using (a,) for » = 3 and (5), we obtain
0
K3 Pan;Ps) — K3 (P1+P27 71’3) |
(91142’93 01+4q2,0,q; B
P P
Pi+p:’ Ditpe’ 0
1 1 2
+ (p, -+ po) K* ’
q: a2

! ? 0
6+9 Gt4
which by defining

x Y z
z+yLtz’ ziytz @ 2
(6) K(z,g,z)) _ @ ty+o) K +y +Y +y+
r Y u v w

w-v4+w’ wtvtw w+vtw

gives
D1y P2y Ps D1+ Do, 0’1’3) (Pn]’z,O)

7 K =K + K .
@ (qnqz,qa) (ql+qz,0,qa 915 42, 0
Further, for arbitrary 4 > 0, we have from (6),
(8) K(la:,).y,/’tz)le(m,y,z)’

Uy Dy W U, Uy W
and

TyY,2 _ TyY,y2
(9) K(Au,lv,lfw) _K(u,'v,fw)’

that is, K is positively homogeneous of order 1 with respect to the variables
%, Y, 2 and of order 0 with respect to the variables %, v, w.

Thus, in order to prove Theorem 1, it is enough to solve the functional
equation (7) under the additional conditions (8) and (9).

2. Let D be the following domain in D%: x,, @,, @5, Yy, Y2, Y5 = 0,
By Y1 oYy ToYy TaYa+ ZaYs-2,y; > 0 (that is, at least two of the pair of
variables have positive elements).

It is clear that the interior D° of D coincides with the interior of D,.

Let K be a function defined on D and be positively homogeneous
in the sense that (8) and (9) hold. Then we prove the following theorem.
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. z,Y,2\ . . o
THEOREM 2. If a function K (u’ Ys ) is conlinuous, pairwise
Y

symmetric and positively homogeneous in D and satisfies, in D, the functional
equation (7), then

2 3
0 (5 2 5) < of(S)tog (3 a) - Satoga] +
3 3 . |
B [( wi)log (2%) —Zwilogyi]’
=1 i=1 =1

holds in D, where a and f are arbitrary constants.

In order to use the method of distributional differentiation we
prove the more general theorem.
Ty Xyy @
Yi, Y2y Y
containing D, is pairwise symmetric and positively homogeneous in D°
and satisfies equation (7) in D° then it is of the form (10) in D°.

It is now evident how Theorem 2 follows from Theorem 3, namely,
each function which is continuous in D can be continuously extended to
the domain S and then it can be considered as a distribution. On the
other hand each function which is continuous in D and has the form (10)
in K° has this form (10) also in D.

The proof of Theorem 3 is given in section 5.

3. The symbols

Xy, Ly, 0 z,+2,,0, 2
.K 1y ¥29 ) and .K( 1 2y Y 3)
(?/17 Y2, 0 Y1 +Y250,9;

in (7) are meant as in [2], i.e., in the sense of generalized operations on
distributions (see also [1] and [11]). In solving (7), we shall use differen-
tiation. We shall denote the partial derivatives of K with respect to z;
and y; by K and K, , respectively.

The symbols

&1+ X, 0, 34 @ [®1y @25 0 L1y gy 0
K(y1+yz, O,ya)’ K (yl, Yas 0)’ Ko (@/1, Yas 0)
are defined uniquely, because they do not depend on a succession of
performing operations (see [5]).

In [2], the following lemma is proved.

LevmaA 1. If f(z,y,2) = g(z+y,2) = h(z,y-}+2), where f is a distri-
bution of three variables and g and h are distributions of two variables, then
there is a distribution I of one wvariable such that f(x,vy,z) = I(x+y-+2).
" The proof of Lemma 1 is based on a simple substitution. In[2], Lemma 1

is formulated for x,y,z > 0, but it is true also in the case where z,y
e R? z,y > 0. If in particular ¢ = 3, we obtain the following lemma.

THEOREM 3. If a distribution K ( ) defined in an open set S
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Lyy Bay T Xy, Ly + 2 L+ 2y, 2
LEvmA 2. I 17 2y 3): (1’ 2 3):]@(1 2 3)90 Ty, T
ff(?/lr Y25 Ys g Yis Ys+Ys Y1+ Yz, Ys (#yy @3, @3,
Y1y Yoy Y3 > 0), where [ is a distribution of sixz variables and g, h are

distributions of four variables, then there is a distribution I of two variables

XLyy Loy T T,+2,+®
such that 1372y 3) =171 ( 12 3).
f(?/n Y2y Ys Y1+Y21Ys

4. Before proving Theorem 3, we briefly sketch and consequently
correct a slip made in [2] (in section 4, proof of Theorem 3).
If H is a distribution satisfying

(11) H(w,y,2) =H(z+y,0,2)+H(x,y,0)
and H(Az, Ay, Az) = AH (2, vy, ?)
on appropriate domain, as in [2], we obtain
H,(z,y,2) =G(@t+y+z)—alr), Hy(r,y,2) =G@+ty+2)—B),
Hy(z,y,2) =G@+y+2)—y(2),

where a, 8,y are different distributions (H,(x,y,2) is the partial de-
rivative of H with respect to x ete.) and

(12) H(z,y,2) = (@+y+2)G(@+y+2)—za(z)—yBy)—27(2),

(13) [@) +f(y)+-fa(2) = glz+y+2),
where f,(z) = #*a’(®), f.(2) = 2*'(2), fa(®) = 2*y’(2) and
(14) fi@) = ao+b; (i =1,2,3)

(cf. (12)—(14) above with (13)—(15) in [2] for corrections). Consequently,
b, b,
a(z) = ulogw——w-+cl, g(z) = alogz — _w-+02’

b b,+by,+b
y(®) = alogw—?3 +e¢; and G(x) = alogx— —L{:_’_—i +d,

where ¢; (¢ = 1,2, 3) and d are constants, so that (11) becomes
H(x,y,2) =al(x+y+2)log(x+y+2)—xlogr —ylogy —zlogz] +
+d(@+y-i+2)—c,x—cyy—cCy2.
Because of the symmetry of H, we get ¢, = ¢, = ¢; = 0. Thus,
H(z,y,2) =a[(s+y-+2)log(x+y+2)—xlogy —ylogy —zlogz] +
+d—e)(@+y+2),
same as in [2]. This H satisfies (11) if d —e¢ = 0, that is,
(15) H(x,y,2) = a[(x+y+2)log(x+y+2)—xloge —ylogy —zlogz].
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5. Proof of Theorem 3. Let (m“‘"’z’””a
Y1: Y29 Ys
note that (9) leads to the Euler formula

Do o T Ty, Ty T Ty, Tgy T
(16) DOy, 0, 9] T Oy, 90, 90 T T Oy, s, 9,

Differentiating (7) with respect to y,, we get

Ly, o, X 2, +2,,0,2
17 K 1 2y 3) K (1 29 ? 3).
an (3)(?/17%7?/3 e Y1+ Y25 0,93

Next on differentiating (17) with regard to z, and z,, we find

Ly Lo, L 2, +2,,0,2
K3]( 12y 3)=K31( 1 22V a),

)e|D°. First of all we

Y1)Y24Ys Yr+Y2,0,9;
(18)
K (wlaxzyws) - K (m1+a’270; .’1;3)
% Y19Y2y Y3 2\¥1+Y2,0, 93]’

so that K, = K,, and because of the symmetry of K2 and so of K, we
obtain

(19) K:u = Kaz = Kza = K21 = K12 = K:u = KH,

which implies that K’’ is also symmetric.
Similarly we can prove that

20) K - K§) - K§) - XY - K§) - K3
From (18), it follows that

K”(ml’ 2] ms) +K,,(“31+m27 0, ma)!z_ K,,(mz'l‘wa’ 0, w1)

Y15 Y2, Ys Y1+, 0, 2/ Y2+9Ys, 0,9,

In view of Lemma 2, there is a distribution I of two variables such that
Ty Toy -"73) . I(-”’1+a"2+a’a)
Y15 Y2y Us Y1+Ya+9a)
Using (19) and (21), since K" = K,, = K,,, we have

K, (3717 L2y -’”s) _ G;(-’L'l +‘17z+a73) +P(971: D2y ma)’
4
Y11 Y2, Ys Y1+Y2+Ys Y2,Ys

Ty, Loy & @+ @, +o Xy, By, T
K(a)( 19 T2y a) =G'( 17T %2 a) +Q( 1y Ly a)’
Y1) Y29 Ya Y1+Y21+Ys Yy Ys

(21) K(

where G (;) is a primitive distribution of K (:;) with respect to ¥ and P, @

are distributions of five variables. Hence, there is a distribution of four
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variables F, such that
(22) ' (wn ) 3’3) > (xl + 2 +a73) _ 7, (-’771 y X2y 433) ‘
Y19 Y25 Ys Y1+Y2+Ya Ys
Similarly, there exist distributions ¥, and ¥, of four variables such that

Tyy Lo, ma) . G(w1+502+m3) F (-’”17“72, ms)
- - ’

K")(y Yoy ¥ Yi+Ya+y y
(23) 1 29 3 W1 2 3 1

—K(z) (“’1’ Ly, -'173) _ G(m1+m2+“’a) _ 7, (-’1711 H2Y) ms).
Y1y Y2y ¥Ys Y1+Y21+Ys Y2
Now (16), (22) and (23) yield

@4 f (9917 Zg,y a;a) L, (5”17 g, 973) L, (mn L, a’s) —y (-Trl—-’l’z‘l‘a’a),
1 2 Ys Yi1+Y2F+Ys

where

Lyy By & XLiy Xoy & T €
25 i’ 1y W29 3) — iFi( 1y &2y 3)’ ( ) = G( ).
(28) ! ( Yi y Y: 9 Y Y Y

Differentiating (24) successively with respect to v,, ¥,, ¥; and denoting
the derivatives by f;, ¢/, we have

1 [Try B2y T3\ _ o (T1y B2y T3} _ oo (T1y T2y T3} _ '(m1+m2+ws)
h ( Y1 ) 1. ( Ya ) 15 ( Ys ) d Yi+Y:1+Ys
which gives rise to a distribution A of one variable such that
fi (11?1’ ;2’ 373) = YA (¥ 1+ B+ @3) + By (01, &3, 73) (0 =1, 2,3),
1

g(ml‘i‘mz‘l‘wa
Yr+Y2+Ys

(26)
) = (Y1 1+ Yo+ Ys) A (2, + %2+ @3) + B(xy, T2, &),

where B,, B,, B,, B are distributions of three variables and B = B, + B, +
+ B,. Consequently (22), (23), (25) and (26) lead to

(xh T2y fl’a) _ By, @y, 23)  B;(#1,5,,%,)
(9 - - ’

Y1, Y2, Ya Y1i+Y:+Ys Y;
which on integration with respect to y;, results to

D1y Tay Ty

(27) K( v
Y1y Y2+ Ys

) = B(x,+ @, 4 ;3)log (2, + @2 + @3) — B; (@1, @2y 23)Y; + Oy,

where C; is a distribution of the variables z,, z,, 2, and y, for k # j.
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Now (27) can be rewritten as

(m“ e m“) = Blog(y,+ ¥z +Ys) — Bilogy, — B,logy, — B;logy, + Dy,
Y15 Y2, Ys
where D; = ¢;+D } B, logy,, i.e., D; does not depend on y;, so that

k#j
it is easy to sce that D, = D, = D,, all depending upon 2,, 2,, #; only,
say equal to By, Thus

(28) K (wl’ w27 wa)
Y11Y2:Ys

= B(®,, Tq, Z3)10g(y1 -+ Y2+ ¥3) — ZBi(-’Du Ty, T3)10gY; + By(@,, @3, &5).

1=

=

From (28) results

wl, 932, $3) — B(L)(wl’ mz? w3) _ By)(:vl’ w2? ma)
Y19 Y2, Ys Y11+ Y2+ Ys Y
for 2,7 = 1,2, 3 which with (20) give

(29) KE‘;%(

B}i)(ahaa’zya’a) =Bﬁ)(w1,w2,w3) (k,j + 1)
Y; Y ’
for arbitrary indices ¢, j, ¥ = 1, 2, 3. Since y;, ¥, are linearly independent,
we have B{) = 0 for ¢ # j. Thus

(30) Bj(y, 4, 23) = by(w;) for j =1,2,3,

where b; is 2 distribution of one wvariable.
Since B = B, + B, + B,, (29) and (30) give

Y1, Y2y Ya Y1+Y2TYs
In the same way, from (20) and (31), we obtain

by (@) = by (w,) = by(xs) = B,
where § is a constant.
Hence, B;(z,, ®,, ;) = b;(x;) = px;+d;, where d; (i =1,2,3) are
constants, and B(z,, ,, ©,) = (%, - ©,+ ;) +d,+d,+d; so that (28)
becomes

for j 1.

L1y Loy Xy
Y19 Y2, Ys

3 3
+(dy+dy+dg)log(y, +y.+ys) — B Zmilog'!/t— Z d;logy;.
iz

i1

(32) K( ) = By(®1, Ty, ®3) + B(@1+ Ty + 24) 108 (Y1 + Y2+ ¥a) +

Symmetry of K yields d, = d, = d; = d (say). Then the substitution
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of (32) in (7) gives d = 0 and
(33) Bo(@,, @3y #3) = By(@,+ ®sy 0, @3) + By (3, @5, 0)

with B, symmetric.
Now, it is easy to sce from (32), since d = 0, that B, is positively
homogeneous. Thus, by [2] or by using section 4 and (15) we have

By(zy, @2y 23) = a[( )log (2 ) — 2:1; logw]

Hence K has the required form (10) and this completes the proof of The-
orem 3.

6. Proof of Theorem 1. By Theorem 3, K satisfying (7), (8) and
(9) has the form (10). Hence from (6) and (10), we get

P P2 Ps
K? (p”pz’p"’)=(pl—r112+p3)K? PitPet+Ps Pr+PetPs Prt+D:+Ds
915 92y 9s 71 4 ds

91+‘12+93, Q1+92+93’ ¢+q:+4qs

3 3
() =4l Zpmen) +5(-Z ),

which with (5) gives

(34) K* (pl’ 1;:) = A(—p,-logp, —p,-logp,) + B(—p,-logq, —p,-logq,).

1

Now (a;) and (34) yield the sought for result (3). This proves Theorem 1.

7. Directed divergence and inaccuracy. In order to obtain directed
divergence, use the initial conditions

K2(1’0)=1 and K2(1 1)—0

%’ % 2 7
(refer [6], [4], [7]).
In order to obtain inaccuracy, use the initial conditions,

K (f 0)—1 and K"(7’2)=1
b2

2
(refer [4]).
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