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Value distribution of regular functions
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1. Introduction. The study of the value distribution of a regular
function of two complex variables in a given domain in the space C?
of two complex variables is of a different character to the analogous
problem in one variable. Riemann’s mapping theorem shows that any
simply connected plane domain is conformally equivalent to either the
open plane or the unit disk. The absence of any comparable theorem
in C? produces the problem of finding suitable domains in C? with which
to work and in which techniques from the classical one variable study
can be used. Such a type of domain (analytic polyhedron) was introduced
by Bergman, and on the three dimensional boundary of an analytic
polyhedron, IR, lies the two dimensional distinguished boundary, FZ(!)

(Bergman-Silov), on which any function regular in I must assume the

maximum of its absolute value. A function regular in 9 can be repre-
sented in terms of its values on {2 by (i) generalizing the Cauchy formula
(Bergman, Weil(?)) or (ii) generalizing Szegé’s orthonormal boundary
functions (Bergman [1]). Consequently upper bounds for the absolute

value of a function regular in I can be given in terms of its values on 2.
We consider in this paper the relations between the value distribution
of a regular function in 9 and on the part of dM(®) complementary to F2.

The three dimensional boundary, m?, of 9N consists of a finite number
of segments of analytic hypersurfaces. An analytic hypersurface is
a one parameter family of analytic surfaces called laminas. If we suppose
that f(z,, 2,) considered as a function of one complex variable in each
lamina belongs to a given normal family, then bounds for |f(z,, 2,)| in
a general analytic surface, %, meeting M, can be given in terms of the
values of f(z;,2,) on m®*—@?, under suitable extra hypotheses (Berg-

* Work supported by AEC 326 — P 22.

(1) German letters denote manifolds, and the superscripts 1, 2, 3 indicate the
dimension.

(%) See [1], for literature.

(3) 9M denotes the boundary of 1.
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man [1], [2], Charzynski [3], Sladkowska [5]). It is the nature of these
extra hypotheses that concerns us here. Charzynski assumes that 90}
meets only one of the analytic hypersurfaces which constitute m?® (see
also [1], p. 186). In general, the analytic surface 2} meets m® in a closed
curve a; and each point of a; belongs to one or more of the analytic hyper-
surfaces which constitute m3. Points lying on both a; and F2 lead to
difficulties when the Poisson formula is applied, and Sladkowska intro-
duces geometrical hypotheses on the behavior of 2 N I near such points
to overcome this (see also [1], p. 189). We shall show firstly how to make
extra hypotheses on the function class, instead of the domain, to get
over this problem. Secondly the bounds we give for |f(z,,2;)| will be
in terms of its values on a one dimensional boundary set, which need
not be connected. The ideas will be illustrated by assuming that f(z,, 2,)
omits two distinet values in each lamina. We note here that Bergman [2]
has given bounds for |f(2,, 2,)| in terms of its value at a single boundary
point for a more special type of domain.

2. Definitions. (Analytic polyhedra and analytic surfaces.)

HyroTHESIS 1. The boundary m? of the analytio polyhedron M consists
of finitely many closed segments & (k =1,...,1) of analytic hypersur-
faces.

Further

|
&= U k) &=1,..,0)

Ap=0

and 3 (4,) i8, for fived A,, a domain lying in the analytic surface
Dy (24y 225 &) =0,

where @, i3 a regular function of (z,, 2,) in M and is continuously differen-
tiable in A,.

HyPoTHESIS 2. We assume that each lamina 5,2,,(}.,‘) can be uniformized
so that to each D, (2, 2,,A,) we associate two continuously differentiable
functions

2y =hp(Zyy M)y 22 = ha(Zy, 4)  (124] < 1)
mapping the closed unit Z,-disk in a (1-1) manner onto 3_?,(1,,) such that
¢k(h'k1(zk’ }'k)) hkz (Zk’ }*k) ) ;-k) =0 ([Zkl < 1)-

For each fiwed A, hy;(Zy, ) (j = 1,2) are assumed regular in |Z;| < 1.
Thus -

1) & ={(7,2): 21 ="y (Zgy Ap)y 22 = Py (Zs A3 120l < 1,0 < A <1}
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HYPOTHESIS 3. Suppose that Ji(A;) N k() =0, if A4 # A,. Also,
for every Aygy Zpg (0 < py<1: |Zpl <13 k=1,...,1), and for sufficiently
small € >0, the set of points (1) for which |Z —Z,,| < &, |Ay— Ago| << & 8hall
include all points of m® near enough to (i (Zyoy Apo)y Prg(Zrey Aro))-

Let %A be a segment of an analytic surface in C?, that is

A = [(zuzz): 2 = 91(0), 2 = ¢:(0), C‘D]7

where D is a simply connected domain in the (-plane which we assume
contains the closure of the unit { disk in its interior, and g¢;(¢) (j =1, 2)
are regular in D. We assume that 09 lies in C?—t, and make the fol-
lowing hypotheses on A* = A; N M.

HypoTHESIS 4. W = {(21, 22): 2= 9:(0), 2 = ga2(), (| < 1}. The
boundary curve a* of W is W N m?, and we suppose that

al = [(zl’i Z): 2y = 9.(6%), 2, = 92(0“'); 0 <y < 2w}

can be divided into P parts, a (j =1, ..., P) given by a yp-range, y; <y
<y (=1,...,P:p, = yp,,) 80 that o c &, for some k(j). The end
points of aj, corresponding to y = v;, y;,,, lie on the distinguished boundary
and we assume that no other points of aj belong to F2.

The last assumption is only for the sake of simplicity.
HYPOTHESIS 5. We know that each point of o} lies in a certain lamina

Si(i) (lk(i)) = {(ﬁu Ry): 2y = hk(i)l(zk(]')f Am))a %2y = hk(i)z (Zk(i)7 ;‘k(i))]

and so we can find functions Ay (v), Zyy (v) (v; < 9 < y;4,) Such that

0; = {(21, 22): 21 = g (Zagyy (¥) s Maiy (9)) 5
22 = Myl Zrey (9)y Aegsy (9)); w1 < p < o} .
3. Definition of the function class G(M, %A).
HyproTHESIS 6. Suppose f(z,, 2,) i8 regular in I and on almost every
lamina J5,(4,) (0< 2, <1; k=1,...,10),
flz1,2) = f(hkl (Zyy Ax)y hyo (2 lk)),

considered as a function in the unit Z,-disk, omits the two distinct values
u(k, A,) and v(k, A,), where we suppose |u(k, }.k)| < vk, A).

We have seen in Hypothesis 5 that a! = U aj, where aj c e3;, except
=1

for its endpoints. The final hypothesis demands that f(z,, 2,) satisfy
a slightly stronger condition in the laminas of m® which are “close to”
the laminas in which a! meets §?*.



154 B. G. Eke

HYPOTHESIS 7. There are positive numbers e, 6; (j =1,...,P: 8,
= 0,,.1) such that

(i) for fized 2uy (v) (w;— 6 < v < y;+ 0;), the function
(2) f (hk(i)l (Zie ()5 2y (®)) s Prrye (Ziy (%) s sy ('P)))

18 regular in the Aisk |Zy; (v)| < 14 &y

(ii) function (2) omits the values w(k(j), Ay (¥) and v(k(j), A ()
in the disk |Zy;(p) <1+¢.

DEerINITION. If the above hypotheses are all satisfied, we say that

fGG(m, Qrtz))

4. Bounds for f(z,, z,) ¢S (M, W). We now give bounds for |f (2o, %s)l,
when (2,9, #3) €2, in terms of the values of f(2,, z;,) on a one dimensional
boundary set b'. For the laminas of & (k =1,...,1), we suppose, for
a fixed 4, (0 <1, < 1), that

I (Z0(A), Ay Mia(ZR (M), M) = (K, &),  where |2} ()| < 1.

We agssume further that if the lamina A, corresponds to a value v,
of the parameter describing a!, for which ype O [v;+ 6, w;.1— &,,], then
[Z%(A)| <7y < 1. The set of points i

bl = [(zl, Z2): 2 = hyy (Z,‘z(l,,), lk),
2e =P (ZR(A)y 4); O< A4, <1, k=1,...,1}.

We fix a point G = (g,(¢™), g2(¢™)) (¥ # ;) ¥51) of o; and give
an upper bound for |f(g,(€), g.(¢¥))|. Set

u(y) = u(k(f), Mgy (9)),  0(®) = v(k(), Ay (w)-

The point & lies in the lamina 3%;(4s(v) in which f(z;, 2,) (When
considered as a function in the unit Z,, (y) disk) omits u(y), v(y) and
assumes the value

w(y) = “’(k(j): lk(j)(w)) when Zk(;') (p) = Z?c(i) (hm('l’)) = Z?:(f)('l’)-

We put
Ziiy () +Zygsy () ’
14+Zy 5y () Zig) (9)

z (Zy(v)yw) =

and consider

f(Z(Zk{f) (v)y V’))'-’“(’P) )
v(y)—u(y)

F(Zyy(w), v) =
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Then F(Z,; (v), v) is regular in |Z,, (y)| < 1 and omits the values 0, 1
there.
Hence, by Schottky’s theorem [4],

IOElf(Z(Zk(i)(W)y 'P))— ’“('V’)I
1+ ]Z(Zk(f)('f’)! v ‘

<loglv(y)—u(y)|+ 1 (B (9 ,w)I[ n+logu(y)},
for |Zyy;(v)l <1, and where
st = max1,| SE=2 )
Thus
(3)  log|f(g.(¢), ga(e™))
< 10g" Io(y)— u(y)] +1og" fu(y) -+ log2+ ~ = 2O loguty),

—|Z(y)]
where Z(y) = Z(ka(w),w) O<p<2m;9 #y;,j =1,...,P).

Estimate (3) may not be adequate to give an upper bound for
1f (7105 220)] 5 (2109 220) U2, since the second term may diverge rapidly as
y —y; so that (3) when integrated over y will become infinite. To
overcome this we use Hypothesis 7 instead of Hypothesis 6 to give an
alternative estimate for log|f(g,(¢"), g»(¢"))| when y lies in an interval

of the type [y,— 4, y;+ 4.
P
For 'Pfo [y;— 6;, v;+ 6;,], we now put

(1+ e0) (Zigy (9) +Z3p (v ))
(14 &)* 42y ('P)Zrm) ('P)

E(VJ) = Z(Zz(i)(V’)’ 'I’)v

Z(Zk(j) (v), 1P)

and obtain
(4)  log|f(gu(e™), ga(e™))|
+| ()|
—1Z ()l
The function log|f(g.(¢), ,(2))| is subharmonic in || < 1 and if we
denote by P(y,(, the Poisson kernel Re{ W+§°
(3), (4), 0

< log™t |v(y) — u(y)|+1log™ |u(yp)| + log2 + {r+logu(y)}.

}, we obtain, using
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(5) log|f(210y 220)| = IOg‘f(gx(Co)y gz(Co))l

1 r . .
<5 [ 10g| (g ("), ga(e™) Py, o)y

2n
1
<2_f {l°g+j”"”)‘“('/’”+1°g+\"<'P>l+10g2}P(w, L) dy+
m 0

Py R L)
—_— 1 P o) dp+
+ D5 5y OB WP, Ldy

j=1 vj+0;

(r+logu(v)) Py, L) dy.

P vj+9
1 min ‘ +1Z)| 1+|z ()|
1—1Z(p)| 1—|Z(y)|

j=1 ._,5].

But, if wa [¥,— &5 y;+ ], then

=1

% (14 &) (1+ 123 (v)) 7
Z(y)| < 12>
2)s T &)+ |Zig) (v)] o=

g1+ ep— IZk(y)('P)l)
(14 )2+ | Zhy) () l/ 3

(o can be taken sufficiently small).

P
Next, the points of a' corresponding to ye U [+ 6;, 51— 8;41])
jel

will lie in the disk |Z,(y)| < R, < 1, where R, depends on m?, é,, ..., ép
P

but can be taken independent of y on the set | J [v;+ &;, ;.. — 811

7=1

Thus

~ R nd 1_ 0 1—R
B < oy 1= ) > R
0

Thus we have established, with the above notation,
THEOREM. If f(2),2:)eS (M, W), and if (210, 2z)
eM N W, then

1 b
10g (210, )| < 5= [ (108" [0(4) — u(v)] +Log* [v(v)|+ 1082} P (v, o) dw+

= (91(40): gz(Co))

i ¥i+1-% 41
1 2
* g;;{ (1—r)(1—R,) W.J"; (ﬂ_‘_log/‘('l’))P('/’a lo)dy +

3 vj+d;
+'_e— f('r:+10g,u(#’))P (v, go)d’l’}

0 y2e,
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5. Notes on the theorem.

A. If we suppose that f(z,,2,) # 0 in _ED—t, then we may set
’u:(k,lk)=0 (0<1k<1,k=1,.-.,l)-

The function [f(2,,2,)] 'e¢S (M, W) and hence we deduce
COROLLARY. If the hypotheses of the theorem are satisfied and if, in
addition, f(2,,2,) # 0 in M, then

Yi+1-% 41

- Z {(1—r.,)(1 B mf.,, {m+log» (1} P (v, Lo)dy+

vi+9

3 1
5 [ s P, tade) + o [ logionIPly, Gidy

0
vj—5;

2r
1
< 10g (210, 2)| < = [ Loglo(w)| Ply, L) dy-+
™ 0

P4 vit1—%+41
t 2—1::—{ (1—7,) (]_ R,) f {r+logu(y)} Py, L) dy+
=1 ’ R

vi+9;

—2 f {n+log#(w)}P(%€o)d'P}

7
where

wlk, & () |}’

ulyp) = max{l,' v(p) = max{l,

v(y) H
| w‘(k y Ay ('I’))
We note that the log2 term in the theorem is not required for the
corollary.

B. Suppose f(z,,2,) satisfies similar hypotheses to those of the
theorem in each of a sequence of analytic polyhedra {M,}° for which
oM, c M,,, (n>1), and M, - M, a8 7 - co. Then in any analytic
surface 2; intersecting M, we can give bounds for |f(2,, #s)|, since any
point (24, 25) € My N A2 also lies in M, N A if n > 7y = Ny(2y9y 220)- BY
the theorem we can find a bound for |f(zy, 25)| if # > n, and the infimum
of these bounds yields an upper bound for |f(z,y, 24)| independent of n
Thus in special circumstances it is possible to give bounds for functions
which are defined in domains in C? which are not necessarily analytic
polyhedra.
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C. If, in B, we suppose f(2,,2,) # 0 in M, and that p! joins a point
of M, to @ on 3, then the lower bounds on |f| exhibited in the corollary
can be used to give estimates on the rate of growth (or of decrease) of
If(g)| as ¢ »@ on ».

D. If we assume in the theorem that the curve a! lies completely
in e}, then the upper bound for |f(z,, 2%) is8 greatly simplified since
Hypothesis 7 is no longer required, and the estimate on |~Z ()] in terms
of r,, B, holds for all y, 0 < v < 2r. In this case, we find, for (2,9, 25) €7,

2r
1
1og ey ] < o | {log* Io(9) — ()| +log™ u(y)|+ log2+
0

4

T A= ra—Fy) ("“08#(#’))} Py, L) dy

(ef. [1], p. 186, [3]).

E. The bounds in the theorem are in terms of the values of f on
a fairly arbitrary one dimensional boundary set b!. If we had normali-
zed B! and assumed f(hkl(O, lk)’ hk2(07 lk)) = (l)(k, lk) for 0 < lk < 1,

k=1,...,,1 then 5(1,0), Z(y) in (b) could be replaced by Z,(v),
Z,(p)/(1+ &), respectively.
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