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CONFORMALLY SYMMETRIC SPACES
ADMITTING SPECIAL QUADRATIC FIRST INTEGRALS

BY

W. ROTER (WROCLAW)

1. Introduction. A non-flat Riemannian space is said to be of recurrent
curvature (briefly, a recurrent space) if its curvature tensor satisfies, for
some non-zero vector d;, the condition (see [8] and [11])

(1) Ry = By,

where the comma indicates covariant differentiation with respect to the
metric of the space.

As a generalization of the concept of a recurrent space, Patterson [5]
initiated investigations of Riemannian spaces whose Ricci tensors satisfy
relations of the form

(2) Rij,l = leij

for some vector d;. Spaces of such a type, i.e. satisfying (2) for B; # 0 # d;,
are called Ricci-recurrent.

According to Chaki and Gupta [2], an »-dimensional (» > 3) Rie-
mannian space is called conformally symmetric if its Weyl’s conformal
tensor

1

(3) Chijk = Rhijk Y (94 R — githj + 0y Ry — OF Ry) +
R
Ma.. —a.
+ ('n—l) (n_2) ( kgu Jg‘lk)
satisfies
(4) C*ijeq = 0.

It follows easily from (3) and (4) that every conformally flat n-space
(n > 3) as well as every symmetric (in the sense of E. Cartan) Riemannian
n-space (n > 3) is necessarily conformally symmetric. The converse of
this is, in general, not true [7].
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A Riemannian space is said to admit a special quadratic first integral
(SQFI) defined by the tensor a; if a,; is symmetric and satisfies the con-
dition (see [3] and [9])

(5) Ay = 0.

(The metric tensor g, is also considered as an SQFI).

After Thomas ([10], p. 413; see also [3], p. 318) we make the follow-
ing definitions:

(A) A set of symmetric covariant-constant tensors B,,..., B, of
type (0,2) is said to be linearly independent if ¢, B, +...+ ¢, B, = 0 implies
constants ¢; = ... = ¢ = 0.

(B) A set of symmetric covariant-constant linearly independent ten-
sors of type (0, 2) is complete if, for any symmetric covariant-constant ten-
sor B of type (0, 2), we have B = ¢, B, +...+ ¢, B, where ¢; are constants.

(C) The index of a Riemannian space i€ defined to be the number ¢
(t>1) of tensors B; in a complete set as defined in (B).

Thus, the index of a Riemannian space is the greatest number of
linearly independent SQFI’s which it admits.

The problem of determining all conformally flat spaces (m > 3)
admitting special quadratic first integrals was treated in some details
by Levine and Katzin in [3] and [4].

This paper deals with analytic conformally symmetric spaces of
indefinite metric forms which admit SQFTI’s.

It will be proved that if a conformally symmetric space (not Cartan-
-symmetric) is of index ¢ > 1, then its scalar curvature vanishes.

If a conformally symmetric space (not Cartan-symmetric) admits
more than one linearly independent analytic SQFI, then it admits exactly
two such.

Necessary and sufficient conditions will be also obtained for a con-
formally symmetric space of an index ¢ > 1 to be local Ricci-recurrent.

The remainder of the paper is concerned with conformally flat spaces
admitting SQFI's as well as with affine collineations in conformally
symmetric spaces.

For brevity, we denote a non-Cartan-symmetric conformally sym-
metric space by a CS,-space.

2. Preliminary results. We start with a canonical form for the co-
variant derivative of the Ricei tensor of a CS,-space whose index ¢ > 1.
To that end we need several lemmas.

LEMMA 1 ([6], Lemma 1). If ¢; and Ty are numbers satisfying
G‘ij'l'ejT‘m =0 or eiij—}-G,-Tm; = 0,
then either all the e; are zero or all the T, are zero.
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LEMMA 2. If (Ty)p and (T'y;)p are componenis of a covariant-constant
tensor Ty, at any two points P and P', respectively, then there exists a non-
-gingular mairiz (a',) such that

(Tog)p = (th)Pa’ii’a’jj“

In particular, if Ty is zero at some point, then it is zero at every poini.

This lemma can be, for instance, proved in a similar way as in Walker
([8], p. 164). It is sufficient, in his proof, to replace K, by T,;.

LeMMA 3. If a conformally symmeiric space admits a symmetric co-
variant-constant tensor ay +# cgy (¢ = const), then the Ricci tensor satisfies
the equation

1
(6) ay R, = IQR,M,, where @ = g"a,, = const.
Proof. As an immediate consequence of (3) and (4), we have

() By =

(ginhk,l - githj,l + 6231'1,1 - 5? Ryeq) —

1
C (n—1) (n—2)

n—2

R.z ( 629:; - 6}' 9ix) -

Summing in (7) over h and ! and taking into account the well-known
formulas
B yvr = Byy— Byy, By, =3By,
we find
1
(8) Ryx— R,y = 5n—1) (B 9y —R,;194) -

On the other hand, it follows easily from (5) that

(9) _ag.k,—aﬁ.,k = O.

Applying the Ricei identity to (9), we obtain
@y B g+ 0 B g = 0,
whence, in view of (5),
(10) aﬂRrW,p—I—aﬂR’jm’p = 0.
Contracting now in (10) with ¢** and using (8), we get

(11) Biay—gyR, 0 ;+ R ja,—gyR,.a"; =0,
which, by further contraction, implies

1
E.d; = Py QR,;.
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But the last equation, together with (11), gives
(12) (o0~ Qas) B (o - Q) B = 0.
Putting
Ty = a’ij—%Qg‘ij’
we see that (12) can be written as
R, Ty+R;T,; =0.

It follows easily from the definition of a,; that Ty # 0. For otherwise,
in view of (5), Lemma 2 would imply

1
a‘j = ; qu With Q = const,

a contradiction. Hence, in view of Lemma 1, we have B = const which,
together with (7) and (10), implies
(13) 9oy Ry, —gu0y R p+ oy Ry p— a5 Ry +

+ 90 By — 90 Ry p+ @i Rjep — G Byp = 0.

Contracting now (13) with g%, we find

(14) (n—1)a, Ry, — 930, R ,+a, R ; ,—QR; , =0,
whence
(15) —(n—1)a,R"; ,+§;0,, B , —ay By, +QRy , = 0.

Adding (14) and (15), we obtain
ayR"y , = ayR'; .
The last formula reduces (14) to the form /
(16) nay B, —gn0,, B, —QRy , = 0,
whence, by contraction with ¢'*, we get
(17) a,,R”®; =0.

But (17), in view of (16), leads immediately to (6). Our lemma is
thus proved.

LEMMA 4. If a CS,-space admits a symmelric covariant-constant tensor
ay; # ¢gy (¢ = const), then each point has a neighbourhood in which

(18) Ry, = CA;4,4,
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and

1
(19) Gy = Y Q9;+ed Ay,

where C is a scalar, ¢ = +1 and A; is a local null parallel vector field.
Proof. Substituting (6) into (13), we get

1 1 1 1
(20) . Qi Byt — Y Qgaly , + w QB p — p Qo By p+

+ay Ry p— iRy p+ 0 By — s By, = 0.

A cyclic permutation of ¢, k¥ and j gives

1 1 1 1
(21) p Qs Bap— P Q9 By p+ . QG By p— w Qg By p+
+ay Ry, —aji Ry 4 a’klRij.p — oy Rg, =0
and, furthermore,

1 1 1 1
(22) — Q95 By p + w Qg5 Byi p — o Qi By p + w Qs By, —

— oy Ry p+ 0 Ry p— 0y Rys , +ay Ry, = 0.

Adding (20), (21) and (22), we obtain

1 1
(23) (aa T an) Ryp = (ajk - 7 ngk) Ry ,.

Putting (as in the proof of Lemma 3)

1
Ty = ap—— ngk:
n

we see that (23) can be written in the form
TaRy,, = Tija,'p-
But the last relation, in view of T;; = T}; and
(24) 'Rij,k = Rt’k,j’
which follows easily from (8) and R = const, yields

Tilek,p = Tijil,p = Tjk-Rpi,z = TpiRjk,l = TipRjk,l'
Hence
(25) Tt‘l-Rjk,p = TipRjk.l'
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Since T;; # 0 everywhere, for each point there exist a neighbourhood
W and a real vector field v/ such that in W the condition »"v*T,, = ¢
(6 = 4+ 1) holds. Therefore, transvecting formula (25) with »*o* and putting
A; =vT,, 8 =vR;,, we find

(26) By p = 64,8y.

But it follows easily from (24) that "R, , = 8.
Transvecting now (26) with v/, we get

(27) 8y, = ¢A,B;, where B, ="8,.

Moreover, as a consequence of (27), we obtain B, = ¢BA, (B = v"B,).
But the last result, together with (27) and (26), leads immediately to (18).
Equation (18) is thus proved.

Substituting now (18) into (25), we easily obtain

C(APT‘I_AlTip) - 0.

Since the space is not Cartan-symmetric by assumption, the last
formula gives Ty = ¢A4;A; which, obviously, is equivalent to (19). Differ-
entiating now (19) covariantly and using @ = const, we find

(28) 'A‘Aj,k_,_'Ain,k = 0.

In view of A4; # 0, (28), together with Lemma 1, gives A4,, = 0,
which is the condition for A; to be a parallel vector field.

Contracting now (19) with ¢“, we easily obtain A'4, = 0. This
shows that A; is a null vector field, which completes the proof.

3. Main results. Now we may proceed to the main results of this
paper.

THEOREM 1. If a C8,-space admits more than one linearly independent
anmalytic SQFI, then it admits exactly two such.

Proof. It follows from the assumption that there exists a symmetric
tensor ay; # cg,; (¢ = const) such that condition (5) is satisfied. Suppose
that a@; # cg; (¢ = const) is another symmetric covariant-constant
tensor. Then, in view of Lemma 4, we have

(29) R:ik,p = GZjZkAp,
1 _ - —
(30) ay =;Qgij+§‘4i‘4;ir

where @ = const, ¢ = 4+1 and Z, is & loecal null parallel vector field.
Comparing (18) and (29), we easily obtain

(31) gA; = CA;, where g =CHK and h ="4,.
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It follows from (31) that ¢ = 0 in some neighbourhood. For otherwise,
the assumption ¢ = 0 would imply C = 0 which, in view of (18) and (7),
gives RB*,, = 0 — a contradiction with the definition of a CS,-space.
Therefore, as a consequence of (31), in this neighbourhood we have

)

Since A4; and A; are parallel vector fields, the last equation yields
C/g = const.
Hence there exists a constant C* such that

(32) 4, = C*A,.
Substituting now (32) into (30) and using (19), we easily .obtain

1 _ _ 1 _
a"i]’ = z Qg‘]’ +e0‘2A{Aj = ; Qgij + CZ(eA‘i Af)

1 _ 1
= ;ngri“ C. (%— XQ% ) = 0,9+ Caay,

which, since d; and C,g;+ C.ay are analytic, completes the proof.

THEOREM 2. If a CS8,-space admils a symmetric covariant-constant
lensor ay; + cgy (¢ = const); then its scalar curvature vanishes.

Proof. Differentiating (18) covariantly and applying the Ricei
identity, we find

(33) R, R+ R R, = (CpA;—C A ) A A,

On the other hand, it is known that, for a null parallel vector field,
the relations
(34) AR, =0, AR;=0, A'4,=0
hold.

Therefore, differentiating (33) covariantly and using (18), (7), (34)
and R = const (see the proof of Lemma 3), we get

(35)  CAn(A;A,Ru—A AR+ A A Ry— A AR,
= ('n,—2) (O,pmAl_ C,lmAp)AjAk'

Transvecting now (35) with A’ and substituting (34), we easily obtain
A"C,, = 0 which, by contraction with g®, reduces (35) to the form

C.RAj.AlAm = 0 .

Since C cannot be zero, our theorem is proved.

Now we shall obtain necessary and sufficient conditions for a con-
formally symmetric space to be Ricci-recurrent.
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THEOREM 3. Let a CS,-space admit a symmelric covariant-constant
tensor a; # cg;; (¢ = const). Then it is a local Ricci-recurrent space if
and only if the condition

(36) Rrerjpl—*_‘Rrj‘Rrkpl = 0

18 satisfied.

If (36) holds and R, # 0 everywhere, then the recurrence condition (2)
is satisfied at every point.

Proof. Adati and Miyazawa [1] proved that the recurrence vector
of a conformally symmetric Riceci-recurrent space is a local gradient.
Therefore, differentiating (2) covariantly and using the Ricci identity,
we eagily obtain (36). The sufficiency of the first part of our theorem
is thus proved.

Suppose now that (36) is satisfied. Thus, in view of (33) and (35),
we find

(37) AjAp'Rkl_AjAl'Rpk+AkAple-_,AkAlRpj == 0.
Transvecting (37) with v/v?, we get
(38) 'Rkl = GA.I Uk'—eAk Ul+ UAkAl’

where U, = v"R,, and U = 7" ?*R,,.
But the last equation yields U; = e¢UA;, which reduces (38) to the
form

(39) Rkl = UA‘k'AI‘

Since R, cannot be zero (otherwise the space would be Cartan-
-symmetric), from (39) and (18) in some neighbourhood we have

c
(40) Rjk,p = -U—_'A.p( UA]'Ak) = dpRjk'

The sufficiency of the first part of our theorem is thus proved.

If now R; # 0 everywhere, then each point has a neighbourhood
in which (40) is satisfied. But (d; —d;) R; = 0 implies d; = d;. Therefore
there exists a vector field d; such that (2) is satisfied at every point of
the space. The last remark completes the proof.

In what follows we need the following lemma:

LEMMA 5. The Ricci tensor of a C8,-space of an index t > 1 is of the
form

where E; is some covariant vector.
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Proof. Transvecting (35) with v™v’o?, we find
(42)., O(Ry—e4,U;+e4,U,—UALA) = (n—2) (DA, —eD)) Ay,

where D = v"v°C,, and D; = v"C .
But (42), by transvection with v*, gives

20(U;—eUA;)) =e(n—2) (DA;—eD))
which, together with (42), implies

Ry =eA,U;+e4,U,— UA,A,.
The last equation is equivalent to
By = A (eU,—3UA)+Ay(eU,—2UA4,),
which leads immediately to (41).

4. Conformally flat spaces admitting SQFI. Every conformally flat
space (n > 3) is obviously conformally symmetric. Thus all theorems
proved for conformally symmetric spaces remain true for conformally
flat spaces. Using the previously obtained results we prove now the
following theorem (Roman indices take values 1,2,...,n and Greek
indices take values 2,3,...,n—1):

THEOREM 4. If a non-Cartan-symmetric conformally flat space (n > 3)

admits & symmetric covariant-constant lensor ay + cg,; (¢ = const), then
there exists a local coordinate system such that the metric takes the form

(43) ds* = p(dz')’ +k,,do*dz* 4 2da da”, ¢ = Gk, 2 7",

where (k;,) 18 a symmelric and non-singular matriz consisting of constanis,
and @ is & non-constant function of x* only. Every space (n > 3) with a meiric
of this form is recurrent and mon-special.

Proof. It follows easily froem (41) and (34) that A"E, = 0. This,
in view of (3), (34), (41) and R = 8, yields |

(44) R,ER 4,+R,;ER,

1
= _rn, 2 S<gﬂAiAm_gij.-.Al-{—gaA,Am_gimAjA’)’

pa— e

where § = E"E;.

Transvecting (44) with 4’ and using 4"R*;,,, = 0, we find SA4;4,4,,
= 0. Hence § = 0 and, in view of (44), condition (36) is now satisfied.
Thus the space is local Ricci-recurrent by means of Theorem 3.
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But in a conformally symmetric Ricei-recurrent space, coordinates
can be chosen so that the metric takes the form ([7], Theorem 3)

ds® = p(dz")’ + kl,,dwfda:" +2dx' dz™,

(45) @ = 2(n—1_2—)0exp (fA da:‘) k2t + ey, 2t o,
where k,, = k,, are constants such that |k,,| # 0, (¢;,) is a symmetric
matrix of constants satisfying k%c,; = 0 with (k%) = (k)" A(a") # 0,
and C # 0 is a constant.

Every n-space (n > 3) with a metric of this form is conformally
symmetric and satisfies (2) with By # 0 # d,.

Hence, in view of (45), we may write

(46) ¢ = Gk, a*2" + ¢, 0 2",

where G is a non-constant function of 2' only.

But, as follows easily from (2) and (3), every conformally flat (n > 3)
Ricci-recurrent space is of recurrent curvature. Therefore, all ¢;, in (46)
must be zero ([7], Lemma 6), and metric (45) takes form (43).

The second part of our theorem follows from the fact that every
space with metric (43) is recurrent and non-special ([8], p. 176).

Remark. Theorem 4 can also be deduced from some considerations
of Walker ([11], p. 59-60) and those of Levine and Katzin ([4], p. 257).

5. Affine collineations in CS,-spaces. A Riemannian space is said
to admit a conformal motion if there exists a vector field p* such that

Lg,; = 2394,

where L denotes the Lie derivative with respect to this field, and s is
a scalar expressible in the form

,
$= P

If 8 = const, then the conformal motion is called homothetic.
A Riemannian space is said to admit an affine collineation if there
exists a vector field ¢* such that

-

By 1 \
(41) L] = 5 P UL0) 0+ (T~ (D),
which shows that every homothetic motion is an affine collineation.
The converse of this is in general not true.

It is known that
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THEOREM 5. If a conformally symmetric space with non-constant scalar
curvature admits an affine collineation, then this collineation is a homothetio
motion.

Proof. It follows easily from (47) that conditions

)

are equivalent. Therefore, in view of (12) and Lemma 2, we obtain

L {h} 0 and (Lg“j),k =0

1
Gy = ;Qg,-j, where a,; = Lg;.

Since ¢ = const, our theorem is proved.

THEOREM 6. If a C8,-space admits an affine collineation, whwh 18
not a homothetic motion, then its scalar curvature vanishes.

This result follows immediately from Theorem 2.
As a consequence of Theorem 6, we have

THEOREM 7. If a C8,-space with non-vanishing scalar curvature admits
an affine collineation, then this collineation is mecessarily a homothetic
motion.
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