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On the extension of holomorphic maps with values
in a complex Lie group

by NGUYEN VAN KHUE (Warszawa)

Abstract. The aim of this note is to study the Hartogs and Riemann extension thearem for'
holomorphic maps on open subsets ol locally convex spaces with values in complex Lie groups:

The Hartogs extension theorem for holomorphic maps on a Riemann
domain over a Stein manifold with values in a complex Lie. group has. been.
proved by Adachi Suzuki and Yoshida [1]. The aim of this note is to study the
Hartogs and Riemann extension theorem for holomorphic maps on open
subsets of locally convex spaces with values in complex Lie groups H

Let G be a complex Lie group and Q be an open set in a Fréchet space F.
Let K be a closed set in F. The aim of this note is to study the extensmn ‘of
holomorphic functions on 2\ K with values in G to holomorhic functions on £;

For every complex Lie group G and for every open set  in-a Fréchet
space F, let 0(R, G) denote the set of all holomorphic maps from 2 onto G.

THEOREM 1. Let Q be a connected neighbourhood of the sphere
S ={xeB: ||x|| =1} in a Banach space B such that

dist(S,0Q)=06>0 and dimB>=2
Then the restriction map O(Qu W, G)— O(Q, G) is surjective, where,
W= {xeB: (x| <1}.

Proof. Let 0 < ¢ <min($,1). Put U = {xeB: 1—e¢ < ||x|| < 1+e¢}. Then
U is an open nelghbourhood of S. Since dim B> 2, U is connected and
simply connected [2]. Let us show that U< . Given xeU and let
1 <|lx|| <1+e Put

Jo=sup{A>0: (xeQ V1/IIxl| < &< A}
If 1y = o0, then xeQ and if 4, < co, then A,xedf2. Since x/||x|€S we have
& < ||[Aox —x/lIxll || = lIxll (Ao = 1/1I%]) = AqlIxll —1.
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Thus A, =1+¢/j|x|l. Hence xef. Similarly we have > {xeB:
l—e<|x|| <1}

(a) First we assume that G is commutative. Consider the map exp from the
Lie algebra L of G into G. Since G is commutative exp is a covering map from
L onto the component G, of G containing. the unit element e. Let g€ 0(R, G).
Considering the map ags !, where g,€0(f), because .of the connectedness of
2 we can assume that a(Q) € G,. Since U is connected and simply connected,
there exists a codtinuous map &:UU —L such that a|, = exp & [9]. Obviously
& is holomorphic, because exp is an analytic covering map. By [6], ¢ has
a holomorphic extension f:Qu W — L. By the connectedness of € and since
oly = expfly and U is not empty open, it is easy to see that ¢ = exp Ao

{b) Now let G be an arbitrary complex Lie group. Then G = Z x X, where
Z is a complex commutative Lie group and X is a Stein manifold 5]. Let
¢ = (0,,0,)€ O(R,G). By (a) it suffices to check that o, has a holomorphic
extension f,: 2u W— X. We can assume that X is a closed submanifold of C"
for some n. By (a), o, has a holomorphic extension f: QU W-C" Put
V={xeQuUW B(x)eX}. Then IntV#@ Let x,eQuUWnIntV and
xo€8Int V. Take a neighbourhood ¥V, of f(x,) in C" and a connected
neighbourhood U, of x, in QU W-such that

VonX ={zeVy fi(2) =0, i=1,...,n}

and B(Uy) < V,, where f. are holomornic functions on ¥, Because of the
connectedness of U, and since f;f(U, nIntV) = 0 and U, N Int V = @ we infer
that f;8 = 0 on U,. Hence A(U,) = X. Thus Int V' is not empty closed-open in
QU W.and therefore Int V = Q-U W, because QU W is connected. This state-
ment completes the proof of Theorem 1.

- THEOREM 2. Let T be a finite-dimensional analytic set in a Fréchet space
F with codim,T> 2 for all xe T. Then the restriction map O(R, G} - O(Q\T, G)
is surjective.

The proof of Theorem 2 is based on the following

LEMMA 1. Let T be a submanifold of a complex manifold X such that
codim, T 2 for all xe T. Then for every x € Tthere exists a neighbourhood V of
x such that V\VAT is connected and simply connected.

. Proof. Take a chart (V;0) at x such that O(V)=V,xV,,
8(VnT)=V;x0, V; and V, are balls in C" and C"* respectively, where
p=dim,T and n=dim,X. Then V\V T is connected, because VAT is
a proper analytic subset of the connected open set V. Since dim V¥, > 2, V,\0is
simply connected. Hence V\V A T is connected.

LeMMA 2. Let n: Z — W be a covering map and let o be a map from a convex
set X in a topological linear space F into W which is continuous on every
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finite-dimensional subspace of F. Let o be continupus on an open convex subset
V of X. Then there exists a map f. X — Z such that nf = o, B is continuous on
epery finite-dimensional subspace of F and f|, is continuous.

Proof. We can assume that V' @B. Let x,e V and z,en™'(o(x,)). Since
Vis connected and simply connected there exists a unique continuous map
y: V—Z such that ny = o], and y(x,) = z,. Consider the family # of all
finite-dimensional subspaces B of F containing x,. Then for every Be % there
exists a unique continuous map f,: X "B—Z such that nfi;.= oy, , and
Bp(xo) = zo. Thus the formula f|x~5 = B defines a map : X —+Z such that
nf = ¢ and B is continuous on every finite-dimensional subspace of F. Since
Blv~p = Ylv~n for BeB, it follows that -f]; is continuous,

Proof of Theorem 2. Since G ZxX, where Z is. a complex
commutative Lie group and X is a Steiri manifold, and Q\T is connected, as in
the proof of Theorem 1 we can assume that G is commutative.

(a) Assume that dim F = n. We proved Theorem 2 by decreasing induc-
tion on d(T) = min {codim, T xe T}. The case d(T) = n+ 1 is trivial. Suppose
that Theorem 2 has been proved for all analytic sets V with d(V) > q > 2. Let
T be an analytic set in 2 with d(T) = g 2 2 and 0 € O(2\T, G). Let R(T) denote
regular part of T and S(T) = T\R(T). Then R(T) is a submanifold of an open
set Win F and R(T) = Tn W. Lemma 1 implies that for every xe R(T) there
exists a convex neighbourhood W, of x such that W, \W, n R(T) is connected
and simply connected and W, = Q. From the proof of Theorem 1 it follows
that ol \w.~r(r has a holomorphic extension g, ®(W,,G). Since

W, A WAT = (WAT) n (W\T)
we have

Uxiw,,nw,\r = Ul'w.nw,\r = Gylw,nw,\r-

Hence o,lw.~w, = 0,lw.~w, for all x,ye T Thus the maps {o,: x € T} define an
element o, € O(Q\S(T), G) such that o,]g,r = o. Since d(S(T)) > g > 2, by the
inductive hypothesis ¢, can be extended to a holomorphic map f from  into G.

(b) Let F be an infinite-dimensional Fréchet space and o€ @(Q\T, G). Let
xeT and let W, be a convex neighbourhood of x contained in Q. In view
of (a) for every finite-dimensional subspace B of F for which dimB>d=
sup {dim, T: xeT}+2 there exists a holomorphic extension o, 52 W,NB—~G
of olw ~mr- Obviously o,p, =0, w.ns, for every B, =B, where
dimB, >d. Hence the maps {o,, BSF,dimB>d} define a map
0. W,—»G such that o w,.r=0ly,r and o, is holomorphic on every
finite-dimensional subspace of F. By Lemma 2 and by [7] we infer that o, is
holomorphic. Hence, by the proof of (a) we infer that o can be extended to
a holomorphic map from Q into G.

THEOREM 3, Let K be a bounded closed set in a Fréchet space F of dimension
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> 2 such that F\K is connected. Then the restriction map O(F, G) - O(F\K, G)
is surjective.

Proof. Since F\convK is connected we can assume that K is convex.
Whence, by Theorem 1, it is easy to see that the restriction map
O(F,G)— O(F\K, G) is surjective when F is a Banach space. Hence we can
assume that the space F does not have a bounded neighbourhood of zero. In
this case Theorem 3 is an immediate consequence of the following.

LeMMA 3. Theorem 3 is true when G = C.

ProoF. Consider the family § of all absolutely convex bounded sets in F.
For every Be § by F[B] we denote linear subspace of F generated by B. This
space becomes a Banach space with respect to the norm generated by B.
Theorem 1 implies that for every Be §§ there exists a unique holomorphic map
op: F[B]— C which is an extension of o|F[B]\K, where ae@(F\K,C).
Obviously oy, = 0p,|ps,; for B,,B,€§ and B, < B,. Thus the maps g;: Be ¥
define a map f: F—C such that B|px = o and f is holomorphic in every
finite-dimensional subspace of F. By [7], f is holomorphic.

LemMMA 4. Let K be a bounded closed convex set in a Fréchet space F which
does not have a bounded neighbourhood of zero. Then F\K is connected and
simply connected.

Proof. Obviously F\K is connected, because K is bounded convex. Let
xo€ F\K. Let us show that the fundamental group =,(F\K, x,) is trivial. Let
¢: I-F\K be a continuous map such that (0) = o(1) = x,, where I = [0, 1].
Since F is a Fréchet space which does not have a bounded neighbourhood of
zero there exists x, € F\span(¢(I)+ K). By the connectedness of F\K we can
assume that x, = x, ([9]). For every (s;t)exI put

H(s,t) = xg —t(xq—0(s)).
Then H(S,t)e F\K, since x,¢span(o(I)+K). Obviously
H(s0)=H(©0,t) =x, for s,tel
and
H(s,1) = o(s) for sel.
Hence the group =, (F\K,x,) is trivial.

‘THEOREM 4. Let X be a connected Stein manifold. Then the restriction map
O(Y, G)— O(X, G) is surjective for every Stein manifold Y containing X as
a closed submanifold and for every nilpotent Lie group G if and only if
HY(X,Z) =0, where Z denotes the group of integral numbers.

Proof. We can assume that G is connected.
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(a) Let G be commutative. Then the sequence
0-N—-L o G—e
is exact. Since exp is an analytic covering map the sequence
00> 0L > 0% we

is exact, where by OV, 0" and 0% we denote the sheaves of germs of holomorphic
maps on X with values in N, L and G respectively. Since N = Z* for some p we
have H!(X,O") = 0. Hence, since the restriction @(Y; L)— @(X,L) is surjective
for every Stein manifold Y containing X as a closed submanifold [4] we infer
that the restriction map O(Y, G)- @ (X, G) is surjective.

(b) Now suppose G is nilpotent. We shall prove the if part by induction
on dim G. Let the restriction map 0(Z, I') - @(X, I') be surjective for every Stein
manifold Z containing X as a closed submanifold and for every nilpotent
group of dimension < n. Consider a nilpotent group G of dimension < n,
a Stein manifold Y containing X as a closed submanifold and a holomorphic
map ¢: X - G. We may assume that Y= G™ for some m. By Z(G) we denote
the centre of G. Since G is nilpotent and dim Z(G) >0, G/Z(G) is also
a nilpotent group of dimension < n. Hence, by the inductive hypothesis there
exists a holomorphic map 6:Y—G/Z(G) such that &|y =1n0o, where
n: G—G/Z(G) denotes the canonical map and oe®(X,G). Consider the
commutative diagram:

[
Y

——+G/2(6)

where G = {(y,g)e Yx G: o(y) = g}, =, and =, are canonical projections on
Yand G respectively. Since Y is contractible there exists a holomorphic section
y of the main bundle (G, =,, Y) [3]. Obviously o(n,7y)”*€Z(G). Hence by (a),
o(n,y)" ! has a holomorphic extension a: Y- Z(G). Setting d = a(n,y) we get
a holomorphic extension of o.

The only if part. We can assume that X is closed submanifold of C" for
some n. Consider the Lie group G = C/Z+IZ. Since the canonical map
n: C—G is an analytic covering map and X is a Stein manifold, the sequence

0(X,C)- O0(X,G)-» H\(X,0**'%) =0

is exact. Whence, since the maps @(C", G)— 0(X, G) and 0(C",C)— 0(C", G) are
surjective we infer that the map # is surjective. Hence

H'(X,Z)+H'(X,Z) = H'(X,0°*"%) = 0.
Consequently H!(X,Z) =
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