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Abstract. The purpose of this paper is to solve a functional equation which arises from the
Joukowski translormation in aerodynamics and to present a geometric interpretation of the
equation.

1. Introduction and statement of theorem. The transformation

(1 w=[f(2)=30+1/z) (#0)
satisfies the functional equation
(2) f@*+f(i2)* =1 for 0 < |z} < +c0.

The transformation (1) is said to be the Joukowski transformation (see
[6], p. 271) which will be denoted by j(z) throughout this paper.
The purpose of this paper is to solve (2), i.e,, to prove (see Section 3) the

following theorem and to present a geometric interpretation of (2) (see
Section 4).

THEOREM 1. Suppose that a complex-valued function f of a complex
variable = is analytic for 0 < |z| < + xc and is either analytic or has a pole at
z =0. The only solutions of (2) are the following (a) and (b):

(a) £ =jle(2),

where ¢ is a meromorphic function of z which has the form ¢(2)
+ @

= Y ban+32*""? and never vanishes for 0 < |z| < +oo. Here m is an arbit-
n=m

rarily fixed integer and each of by,,3 (n=m, m+1, m+2,..) is a complex
constant;

(b) f(2) =j(exp(¥(2))) = cosh(y (2)),
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where \ is an entire function of z which has the form

+

ni
Y (2) =Z+mm’+ Y byner2*"t? for |z < o0,
n=0

Here m is an arbitrarily fixed integer and each of b,,,, (n=0,1,2,..)isa
complex constant.
Remark. If we put m= -1, b_;=1and b,,4,3=0(n=0,1,2,...),

then we obtain ¢(z) = 1/z. Hence the solution (a) in the above theorem
becomes [ (z) =j(1/z) = 3(z+1/2).

2. A lemma. In order to prove Theorem 1 we shall apply the following
lemma:

LEmMMA 1. If f is any entire function of z which is never zero, then there

exists an entire function g of z such that f(z) =exp(g(z)) holds for |z|
< + 0,

Proofl. See [2], p. 192 and [4], p. 127.
3. Proof of Theorem 1. If we put

3) (2) = f(2)+1if (iz)
for 0 <|z] < + ¢, then, by (2), we have for 0 <|z] < +
(4) e@(f@=if () =1.

Hence we obtain
(5) e(z)#0 for O0<|zj < + .
By (4), (5) we have for 0 <|z] < + @
(6) /o) = £ @) —if (i2).
Adding (3) and (6) side by side yields for 0 <|z] < + 0
(7 f(@) =@ +1/9(2) = j(e(2).
If we replace z (# 0) by iz in (2), then we obtain for 0 <|[z] < +oc
(8) [ +f (=2 =1.
By (2), (8) we obtain for 0 < |z < +
9 f(=2* = f(2)

Since the field of all meromorphic functions for |z| < + o0 has no
divisors of zero, by (9) we see that f is either an odd function of z for 0 < |z|
< 4+ o0 or an even function of z for 0 < |z] < + xx. We discuss two cases.

Case 1. The case where f i1s an odd function of z for 0 < |z| < + 0.
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Replacing z (#40) by iz in (3) and using the fact that f is odd for 0 < |z|
< + o0 yields
p(iz) = f(iz)+if (—2) = —i(f (@) +f (i) = —ip(2),
and so
(10) e(iz) = —ip(z) for 0<|z| < 4+ 0.

Since, by hypothesis, f is analytic for 0 <|z| < +o and is either
analytic or has a pole at z =0, so is ¢. Therefore, ¢(z) is expanded into a
power series of the following form for 0 <|z| < + o0:

(n ¢(2) = Z_:l by 2",

where | is an integer and each of b, (n=1,1+1,1+2,..) is a compléx
constant with b, # 0. Substituting (11) back into (10) and equating the
coefficients of z" (n=1,1+1, 142, ..) yields

(12) bi"= —ib, (=1l 1+1,142,..).
If we put n=1in (12), then, by b, # 0 we have i’ = —i. Hence we obtain
(13) l=d4m+3,

where m is an integer.
By (12), (13) we obtain

(14) b,=0 for all n=0,1, 2 (mod 4).

By (5), (7), (11), (13), (14) we obtain (a) f(z) =j(¢(2)) in the theorem.
Conversely, direct substitution shows, by using (10), that f(z) =j(¢(2))
satisfies our original functional equation (2).

Case 2. The case where f is an even function of z for 0 <|z|] < + 0.
Replacing z (# 0) by iz in (3) and using the fact that f is even for 0 < |z|
< + o0 yields

oliz) = f(i2)+if (—2) = f (i) +if (2) = i(f (D~ (iz)),

and so

(15) @(iz) =i(f(2)—if (iz)) for 0 <|z| < + 0.
By (4), (15) we obtain for 0 < |z| < +

(16) o) oli) =i.

Next we shall prove that f is analytic at z =0 and so f is an entire
function of z. _
The proof is by contradiction. Assume contrary. Then f is not analytic
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at z = 0. So, by hypothesis f has a pole at z = 0. Let its order be ! (€ N). By

Laurent’s Theorem, f is expanded into a Laurent series of the following form
for 0 <|z| < + co:

C-t C—y4+y C-i+2
17 D=—+—F-+—F+ ...,
(17 f@ ="+ i+ 55
where each of ¢, (n= —1I, —I1+1, —1+42,..) is a complex constant with
c_;#0.

Since f is even for 0 <|z] < + o0, by (17) | is an even positive integer.
We put

(18) = -2m,

where m is a negative integer.

Substituting (17) into (2), equating the coefficients of 1/z* on both sides
and taking (18) into account yields

1
2 2 2 _
cz"'+i""" cim=0, or 235,=0,

and so
C1 = 0»
which contradicts ¢_; # 0.

Consequently, f is analytic at z =0 and so f is an entire function of z.
Hence, by (3), so is ¢. Since ¢ is analytic at z = 0, ¢ is continuous at z = 0.
So (16) holds for |z] < + oo. Therefore, ¢ is never zero. Hence, by Lemma 1
in Section 2 there exists an entire function Y of z such that

(19) @(2) = exp (¥ (2))
holds for |z| < + 0.
By (16), (19) we have for |z| < +

(20) exp(¥ (2) +y (i2)) = i.
Differentiating both sides of (20) yields for |z| < + o

exp(# (2 +4 (2) - (4 )+ () =0,

or
2 @) =o.

So ¥ (2)+ ¥ (iz) is a complex constant, say K. By (20) we have exp(K) =i
and so K =¥ ni+2mni, where m is an integer. Therefore, we obtain for [z
< +00

(21) ¥ (2)+y (iz) = § mi+ 2mmi,

where m i1s an integer.
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Since ¥ is an entire function of z, by Taylor’s Theorem ¢ is expanded
into a power series of the following form for |z| < + c0:

(22) y(2)= ;0 b,z"

where each of b, (n =0, 1, 2,..)) is a.-complex constant.
Substituting (22) back into (21) and equating the coefficients of z" (n
=0,1, 2,...) on both sides yields

(23) by = 1 ni+mmni
and
(24) b,(1+iM)=0 n=1,2,3,..).
By (24) we obtain
(25) . b,=0 for all n=0,1, 3 (mod 4).
By (22), (23), (25) we have for |z]| < + 00
+ @
(26) Y@ =ini+mui+ Y bynsyz*"*?
n=0

where m is an integer and each of b,,., (n=0,1,2,..) is a complex
constant. ‘

By (7), (19), (26) we obtain (b) f(z) = j(exp(nﬁ(z))) = cosh(y/(z)) in the
theorem.

Conversely, direct substitution shows, by using (21), that (b) f(z)
= j(exp(y (2))) = cosh(y (2)) satisfies our original functional equation (2). =

4. A geometric interpretation of the functional equation (2). We consider
an ellipse E in the w-plane with foci at 1 and —1 and with centre at 0. Then
there exists a positive real number r (# 1) such that w =j(z) = $(z+1/2)
maps the circle |z| = r in the z-plane in a one-to-one manner onto the ellipse
E (see [6], p. 270). Let z, be an arbitrarily fixed point on the circle |z] =r in
the z-plane. Then we shall prove that the two points j(z,) and j(iz,) represent
end points of two semiconjugate diameters of E.

The angle between the directed tangent to the circle |z] =r at z =iz,
and the positive real axis in the z-plane is given by arg(z,)+ n. Hence, by a
basic theorem in conformal mapping the angle § between the directed
tangent to E at w = j(izo) and the positive real axis in the w-plane is given
by (arg(ze)+m)+arg(j'(izo)). Since j'(izo) = $(1 +1/z%), we obtain

(27) B = (arg(zo) + )+ arg (' (izo)) = arg(zo)+n +arg(3(1 + 1/z3))
= n+arg(zo-4(1+1/z3)) = n+arg(3(zo + 1/z0))
= n+arg(j(zo)) = n+a (mod 2n).

Here « denotes one argument of j(zy).
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By (27) the directed tangent to E at j(iz,) is parallel to the straight line

joining the point 0 and the point j(z,). Therefore, we obtain the following
lemma:

LEMMA 2. With the same notation as above the two points j(z,) and j(iz,)
represent end points of two semiconjugate diameters of the ellipse E.

We may now present a geometric interpretation of the functional
equation (2).

THEOREM 2. Let OP and OQ be two semiconjugate diameters of an ellipse
E in the w-plane with foci at F and F’' and with centre at 0. We denote by v,,
vy, Vs, U the four vectors FI-’: F'P, 0Q, F'F, respectively. Then

(i) PF-PF’ = 0Q? (see [7), p. 178);

(ii) 705 =40, +7,+m) (mod m).

Remark. Let V; and V¥, be two nonzero vectors. Then we denote by

Vi V, a directed angle of rotation to coincide the positive direction of ¥; with
that of V;.

Proof. We may assume that F and F’ are 1 and — 1, respectively. We
consider the mapping w = j(z) = $(z+1/z) from the z-plane into the w-plane.
Then there exists a positive real number r (# 1) such that w = j (z) maps the
circle |z| = r in the z-plane in a one-to-one manner onto the ellipse E. Hence
there exists a complex number z, on the circle |z| = r such that j(zo) = P and
jlizo) = Q. Since f(z) =j(z) satisfies (2), we obtain

(28) J(20)* +j(izg)* = 1.
Proof of (i). By (28), we have
PF-PF' = |j(z0) = 1|1i(z0)— (1)
= ljzo)* ~ 1| =1—jizo)*| = lj(izo)* = 0Q>. m
Proof of (ii). By (28) we have
200, =2 arg(j(izo)) = arg(j(izo)z)
= arg(l —j(zo)z) = 3fg(—(j(zo)— 1)(](20)—( - 1)))
= arg(— 1) +arg(j(zo) — 1) +arg(j(zo) — (- 1))
=n+90,+90, (mod 2rn). =

5. A remark on the functional equation (2). The functional equation (2) is
of the Ganapathy Iyer and Montel type (see [3] and [5], p. 65). Ganapathy
Iyer and Montel solved the following functional equation:

(29) f@+g(2)* =1,

where f and g are unknown entire functions of z.
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They obtained the following theorem.
THEOREM A. The only system of solutions of (29) is

f(2) =cos(e(2)), g¢(2) =sin(e(2)),

where ¢ is an arbitrary entire function of z.

Since, by hypothesis, fin (2) is a meromorphic function for 0 < |z| < 4 ®
and is either analytic or has a pole at z =0 while f and g in (29) are entire
functions of z, we cannot apply Theorem A to (2).

The mappings w = cos z and w = sin z are closely related to the map-
ping w = j(z) since cos z = j(exp(—iz)) and sin z = j(i exp(—iz)) for all com-
plex z. (For applications of the mappings w=cosz and w=sinz to
geometry, see [1].) These two equalities show that j(z) is a solution of (2) for
0 < |z| < + o, since cos?z+sin?z =1 holds and since exp(—iz) takes every
complex value except O.
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