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SOME PROPERTIES OF OPEN AND RELATED MAPPINGS

BY

T. MACKOWIAK anp E. D. TYMCHATYN (SASKATOON, SASKATCHEWAN)

The purpose of this paper* is to provide solutions to a number of
problems of A. Lelek, D. R. Read, J. Krasinkiewicz, and J. J. Charatonik
concerning open and related mappings.

In Section 1 it is proved that if f: X — Yis an open mapping of metric
continua, then f can be extended to an open mapping f*: X* — Y* of Peano
continua such that f*(X*\X) = Y*\Y.

Krasinkiewicz and Minc [8] and Oversteegen [19] have proved inde-
pendently that there is a continuum X which admits a monotone open
retraction r onto an arc Y such that r~!(y) is a non-degenerate continuum
for each 'yeY. In Section 2 of this paper, Oversteegen’s construction is
generalized in two directions.

We are very much indebted to Professor J. Krasinkiewicz whose re-
marks gave simplifications of some proofs of this paper.

1. Extensions of open mappings. All spaces in this paper are assumed to
be metric. A compactum is a compact metric space and a continuum is a con-
nected compactum. We will prove the following

THEOREM 1. Let f be an open continuous mapping of a continuum X
onto Y. Then there are locally connected continua X* and Y* such that X
and Y are subsets of X* and Y* =f(X™*), respectively, dim X = dim X*, dimY
= dim Y*, and there is an extension f* of f from X* to Y* such that f* is open
and f*(X) does not intersect f*(X*\X).

Proof. Let Q denote the Hilbert cube with the metric

a0

1
e(x,y) =) 5|x.~—y.-l,
i=1

where x =(x,, x,,...) and y =(y,, y,, ...) are points in Q. The projection
onto the second Q in the product Q xQ will be denoted by =, and the
straight-line interval joining points x, yeQ xQ by [x, y]. We assume that

* This research was supported in part by NSERC grant A5616 and by a grant from the
University of Saskatchewan.
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the metric in Q xQ is given by
d((x, y), (x, y)) = e(x, x)+e(y, y),

where (x.y), (x, ¥)eQ xQ, and that X and Y are contained in [0} xQ,
where {0} =(0, 0, ..)eQ.

First, we will find a sequence of finite collections ¥; of open subsets of Y
and finite collections %¢ of open subsets of X for each Ge %, such that

(1) %; is an open finite cover of Y with mesh¥; < 1/i,

(2 9 =U!9%: Ge%,} is an open finite cover of X with mesh¥; < 1/i,

(3) f(H) =G for each He %S and Ge%,,

@4 fY(G) =y {H: He%F) for Ge¥,.

Since f is continuous, there is a positive number & such that § < 1/2,
and if d(x’, x) <4, then d(f(x'), f(x)) <1/2. For a given point yeY take
an arbitrary finite cover {B(x,,¥),..., B(x,, 8} of f~!(y) with
X1, ..., X,) =f " 1(y), where B(z, r) denotes the open ball with centre z and

radius r. Since the mapping f is open, the set () f(B(x;, 8)) is open. The
i=1
continuity of f implies the existence of an open set G with

G c _(jlf(B(x,., 5))

such that f~1()) = f~1(G) = ) B(x, ). Put
i=1

4% = (B(x;, ) nf" Y G): i=1,2,...,n.

Then yeG, diamG < 1/i, diamH < 1/i, f(H) =G for He %¢, and f~'(G)
= J {H: He %F}. Therefore, since Y is compact, there is a finite collection ¥,
of sets G which covers Y. The equalities

U{He%f: Ge%) =U{f '(G): Ge%;} = (U{G: Ge%))

=f UV =X
imply that all the conditions (1){4) are satisfied for %; and %¢ constructed in
this way.
Moreover,

(5) if He%;,,, H'e % |, Ge%,, and HNG # Q, then there is G’ € %¢
such that H'nG' # Q.
Indeed, the relations
‘Q#HﬁG=f(H’)nG=f(H'r\f—l(G))
and
U@ =U{G: Ge%f)
imply H NG’ # @ for some G'e%F.
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Now, for each Ge%; we choose an arbitrary point y¢ belonging to G
and for each He %’ we choose an arbitrary point x/¢ in Hnf~1(yf).
Further, if two distinct elements of %¢ intersect, then we also choose a
second point z& belonging to G.

We order the set {x'¢: He%f, 9e%; and i=1, 2, ...} in a sequence
« = {a,, a,, ...} in such a way that if a, = x/"9, then i < n. Similarly, the
set {x: x=yf or zf, Ge¥% and i=1,2,..} is ordered in a sequence
B = (b, by, ...} such that if b, =y or z&, then i < n.

Now, let y = {¢;,c,,...} and y=a or B. Put

7(c;) = (8%, 8%, .. ) x {n(c)}eQ@ xQ,
where
gol0 M1
1 ifi=j.
Observe that

(6) the intervals [y(c;), y(c;)] and [y(cm), Y(cn)] either coincide, or are
disjoint or have only one end-point in common,

(7 d(ci, y(c)) < 1/2 for i=1,2, ...
Put
X, =U {[e(x*, a(xf¢)]: H,H'e%, and HnH # @},

Y, =U{[B0YS), BH): G, He¥, and GNnH # Q}u
v U A{BOY), B(zH)]: Ge ¥, and z§ is defined},
Xoi 10 = U {[e(xF6), a(xH:§)]): He%,, H'e%,,,, and HNH' # @},
and

Yn+l.n = U {[ﬂ(yuc)’ ﬂ(ytll""l)] Gegm Hegn+la and HnG # @}
Finally, we write

X*=XU U (X,UXpy) and  Y*=YU U (LU Y,
n=1 n=1

We define the mapping f* from X* onto Y* putting f*(x) =f(x) for
xeX, f*(a(x*%)=pB(% for each He¥%S, Ge¥%, and n=1,2,..if
H, H'e %S are distinct but have non-void intersection, the middle point of
the interval [a(xH:%), a(xH"¢)] is mapped by f* onto B(z%), and f* is linear
on the rest of X*.

In this way the construction is complete. Omitting the details in easy
cases we are going now to show that X*, Y* and f* satisfy the theorem. It
follows from conditions (1){6) that if

Xm= () X,UXpr1) and Y= () (U Yoy,
n=1 n=1
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then

(8) X™ and Y™ are locally connected continua,

(9) f*|X™ is an open continuous mapping from X™ onto Y™.

Moreover, by (7),

(10) the diameter of each straight-line interval contained either in
X,UX,41, 0rin YUY, is not greater than (3-2""1)~1,

Conditions (7), (8), and (10) imply that

(11) X* and Y* are continua.

Now, if lim x, = xeX and x,, = a(xH-¢) for some Ge %, and He %¢,

m-—
then
lim xH6 = x

m — a

by (7). Since f(x) = lim f(x:6) = lim )&, f*(x,) =B(OS) for m=1,2,...,

and lim B(yS) = lim yC (by (7)), we conclude that

m— ao m— o

im f*(xn) = f(x) =f*(x).

m— o

Therefore, by (10), we have
(12) f* is continuous.
If lim y, =yeY, y,=pOS) for some Ge%,, then

m—

lim y3 =y.

m—*

Since f is open for an arbitrary xef ~!(y), there is a sequence x,, in X such
that lim x, = x and f(x,) = y¢. But x,, belongs to some He %S. Since

m— a0

lim x, = lim x%6 = lim o(x#9)
m-— o m— ao m— a0

and
2 (9 e(f*) 1 BGR) = (m)
we conclude, by (9), that
(13) f* is open.
It is clear that
(14) dim X = dim X*, dim Y= dim Y*, and f*(X) nf*(X*\X) = Q.
It remains to prove that
(15) X is locally connected.
Fix Ae%¢ and put

AO = {a (x:’G)}’
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=U {[a(xn+k , a(xe¥)]):
H He%,,,, HoH #Q, HnA# Q@ # H n A},
Ao = U {[e(x29), a(v§)): H'e%,yy, H 0 A # @},
A+ =U {[“(xnﬂ) (X 0]:
He%,,,, He%, 111, AnH £Q #HNA anci HnH # Q}
for k=1,2,...

If
A = U (Ak U Ak,k+l)9
k=0

then, as above (because if H'€%,.,+,, HNA# @, then there is He%,,,
such that AnH # @ # HNH'),

(16) A’ is connected.

If A has a small diameter, then A’ has also a small diameter. Since the
closure of A’ contains A, we conclude that X is locally connected by (16).
The proof of Theorem 1 is complete.

By a curve is meant 1-dimensional continuum.
From Theorem 1 we obtain

THEOREM 2. Let f be an open continuous mapping of a curve X onto Y.
Then there exist continua X* and Y* such that X < X*, Yc Y* and an
extension f*: X* - Y* of f such that f*(X*\X) = Y*\Y and such that X* is
the Menger universal curve.

Before beginning the proof of Theorem 2, we will recall some definitions
and facts. If p is a point of a continuum K, then p is said to be a local cut
point of K if, for some connected open set D of K, D\{p} is not connected.

The Sierpinski universal curve S (see [9], p. 275) is a plane nowhere
dense locally connected continuum which is obtained as follows: Partition the
unit square [0, 1] x [0, 1] into nine congruent squares and delete the interior
of the central square. In a similar way, partition each of the remaining eight
squares and delete the central square from each of them. This process is
continued inductively. The points of the unit square which are not deleted
constitute the continuum S.

The Menger universal curve U is the continuum consisting of all points
(x, y, z) in the cube [0, 1] x[0, 1] x[0, 1] such that (x, y), (x, z), (y, 2)€S.

We shall need the following theorem of Anderson (see [1], Theorem XII,
p- 13):

THEOREM. Let K be a one-dimensional locally connected continuum. In
order that K be homeomorphic to U it is necessary and sufficient that K
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contain no open subset imbeddable in the plane and K contain no local cut
point.

Proof of Theorem 2. First, in the same way as in the proof of
Theorem 1 we construct Peano continua X§ and Y§ such that X < X§,
Yc Y$§ and an open mapping f§ from X§ onto Y§ such that f§ is an
extension of f and f§(X%\X) < V3\Y.

To obtain X*, Y* and f* we will replace each interval contained in
X§\X and Yg\Y by a copy of Menger’s curve. We can do it as follows: For
each maximal interval L lying in X3\X (or in Y$\Y) we take a linear map-
ping h; from Lonto the interval [0, 1] or onto the interval [0, 2]. The se-
cond case is for intervals Lc X*\X of the form [a(x€), a(x¥%)] with
HnH # @. Define hy: LxI?> - hy(L)xI* by

hi(r’ t’ S) = (hL(r)a t9 S)
and put

V=1Ir,t,s)eR*: 0<r<2,0<t,s<1, (r,t,s)eU
or (r—1,t,s)eU}.

Consider a set X¥* in Q xQ xI? defined by
X¥ =U{(h)~*(V): Lis a maximal interval in XX} u X xI?

and an equivalence relation gy in X} defined by (r, t, s)ox(r, t, s’) if and
only if either (r,t,s)=(,t,s) or r=r'eX, and let ¢y be the natural
projection from X onto X* = X{/oy. In a similar way we define Y¥, gy, ¢y,
and Y* = Y}/oy. The mapping f*: X* - Y* is defined as follows: f*(x)
= @y (f*(r), t, s) provided (r, t, s)e px ' (x) and xe X*. An easy computation
shows that X* Y* and f* satisfy Theorem 2 (X* does not contain local cu
points by (16)).

In Problem 20 of the University of Houston Problem Brook (UHPB),
A. Lelek has asked about just such implications as we have proved in The-
orems 1 and 2.

The following question of Lelek remains open: Can X* in Theorem 1 be
the Hilbert cube?

For other classes of mappings we have the following observations:

THEOREM 3. Suppose f is a monotone mapping of a continuum X onto Y
and X c Q. Then there is a monotone mapping f*: Q — f*(Q) such that f*|X
=f and f*(X) nf*(Q\X) = Q.

In fact, the mapping f* such that f*|X =f and f*|(Q\X) is the identity
has such properties.

Recall that a mapping f: X — Y is confluent (resp. weakly confluent) if
for each continuum K c Y each component (resp. some component) of
f~1(K) is mapped by f onto K.
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Problem 20 has a negative answer for the class of confluent maps and
for the class of weakly confluent maps.

It is known that there is a confluent mapping f from a continuum X
onto Y such that f xid,,; is not confluent (see [15]). This mapping cannot
be extended to a confluent mapping f* defined on a locally connected
continuum X* with X < X* and f*(X*\X) nf*(X) = Q. For suppose that
there is such an extension f*. Then f* is a composition of a monotone
mapping and an open mapping (see [13]); thus f* xid; ;; is also a com-
position of a monotone mapping and an open mapping. Since

Xx[0,1]=(* Xid[o.n)_l(f*(x) x [0, 1]),

we infer f*|(X x[0, 1]) is confluent, a contradiction.
A stronger example is the following:

Example 1. Let P be the standard sin1/x curve in the plane

P={(x,sinl/x): 0<x<1}u{0}x[-1,1].

Let r and s be the points (0, —1) and (0, 1), respectively. Let
X ={r}x[0,1JuPx{0, 1}

and define an equivalence relation ~ on X by setting (x, y, t) ~(x', y', ') if
and only if (x, y, 1) =(x', y, t') or x =x'"=0 and y = y’, and denote by f the
canonical mapping from X onto the quotient space Y= X| ~. Then f is
confluent, and hence weakly confluent.

Suppose that there is a weakly confluent mapping f*: X* — Y* defined
as a locaily connected continuum X* with X < X* f*|X =f, Yc Y* and
S*(X*\X)=Y*\Y. Then Y=/f*(X*) is locally connected. There exist two
sequences {sy} and {s;} converging to f((s, 0)) in Y such that for each n we
have

snef (Px {0)\f (10} x[—1, 1]x {0})

and

sn€f (P> DS ({1} x[~1, 1] x {0}).
Since Y* is locally connected, there exist arcs s0s! joining points s? and s!
and converging to the point f((s, 0)). Since f* is weakly confluent, there
exist continua {C,} in X* such that f*(C,) =s0si. For i=0,1 and n
=1,2,...the only point x, of X* which is mapped by f* onto s is
contained in P\({0} x[—1, 1] x {i}). Thus C,n[Px {i}]# @ for i =0, 1 and
n=1,2,...Since f* is continuous, we have

Ls C, < (%! f((s, 0) =f~(f (s, 0)))-

n—w
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The set Ls C, contains a continuum which intersects both P x {0} and
n—w

P x {1}, a contradiction, because f~*(f((s, O))) is a two-point set.

2. Monotone and continuous decompositions.

THEOREM 4. Let N be an arbitrary continuum and let toe N. Then there
are a continuum M containing [0, 1], an open monotone retraction w of M
onto [0, 1], and a continuous mapping u from M onto N such that

(i) @~ (¢) is non-degenerate for each te[0, 1];

i) u~(t0) =[0,13;

(i) if mis a point in M\[0, 1], then there are closed-open sets V; in

M\[0, 1] such that ﬂ (V) =w(m) and meV, for i=1, 2, .

(iv) if F c M\[O 1] is a continuum, then p|F is a homeomorphlsm

Proof. The proof is based on the construction of Example 3.2 in [19],
p. 118 (cf. [8], Example (3.3)). We use the notation from this example.

Let n,: [0, 1]x[0, 1] - [0, 1] be defined by =, (x, y) = x. There is a
compact set Q < [0, 1] x[O0, 1] satisfying the following conditions:

(@) C=mn,(Q)<[0, 1] is a Cantor set;

(b) @ =U {L: ceC}, where I, cny'(c) is a — possibly degenerate —
line segment with one end-point, the point ¢, on the X-axis;

(¢) I, # {c} for some ceC;

(d) if . # {c}, then there exist two sequences {4;} and {b;} in C such that
4 <a.,<c<b, <b(i=1,2,..) and hml =l =liml,.

Let Q* =Q xR c R3 and let P < {0} x [0, 1] x [0, 1] be the following
continuum: Let / = R? be the closed line segment joining the points (0, 1, 0)
and (0,1, 1), and let K <l be the Cantor ternary set. Hence, the :z-

coordinate of each point xe K has a unique ternary expansion ) x,/3",
n=1

where x,e {0, 2}. Join by a straight-line segment each point xe K, whose

[« o]

zcoordinate can be written as ) x,/3" (x,e{0, 2}), with the point
n=0

(0,0, > y./2"), where y,=0if x, =0 and y, =1 if x, = 2, and let P be the
n=1
resulting continuum.
For each point te P, t =(0, y, z), let A4, denote the straight closed line
segment joining the point ¢ and the point (1, y, z%). Put P* = |J {4,: te P}, X*
=P*nQ* and P.=P*n(l.xR), ceC. Let

Y* = {(g, w, s)eX*: w=0}.

For each xe X*, there exists a — possibly degenerate — unique irreducible
line segment T, joining x and Y*.
Define r*: X* — Y* by r*(x) = T.n Y*; then r* is a well-defined mono-
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tone retraction. Put
B,={(q,0,s5)eY*: 0<g<1}, 0<s<l,
and define an equivalence relation R on X* by
xRy<>x =y or x,yeB, for some ze[O0, 1].

Put X = X*/R and let p: X* — X denote the quotient map. Put Y= p(Y*)
and p(B,) = {z}; then Y=~ [0, 1]. Since p is a quotient map and g = por*
is constant on each set p~!(x) for xe X, r* induces a continuous map r:
X-Y

To each te[0, 1] we can assign a subcontinuum N, of N (see [18],
p. 65) such that

(1) No={to}, Ny=N, N,gN, if t <t and t,>t<>N, > N,.

Let a: X*xN — X* and f: X* x N - N denote the natural projections
from the Cartesian product X* x N onto X* and N, respectively. Consider
the set

X§={(x,)eX*xN: x=(q,w,s) and teN,}

and define an equivalence relation R, on X§ by
XRoy<pB(x) = B(y) =to and r*(a(x)), r*(x(y))e B, for some ze[0, 1]
or B(x) =pB(y) and a(x), a(y)e T, for some ze X*.

Put M = X§/R, and let ¢: X§ - M denote the quotient map. Define w(z)
=gap '(t) and u(t)=pPe " '(t) for te M. Since, if x, ye X* and either
r*(a(x)), r*(«(y))e B, or a(x), a(y)e T,, then g(x(x)) = g(x(y)), we infer that w
is a well-defined single-valued mapping. Similarly, u is well defined. In this
way we obtain the following commutative diagram:

X xS
NP a allo e 0
\ [ g /
M @ y=[01]

If xe X*, then we put
M, ={(x,t)eX*xN: x=(g,w,s) and teN,}.
It is obvious that M, < X§ and M, is homeomorphic to N,,. If 4 = X*, let
M, =U{M,|xeA}.
(2) If A < X* is a continuum, then M, is a continuum.

Indeed, M, —» x gives a monotone mapping from M, onto A. Since
M = o(X3) and X§ = My., by (2) we have
(3) M is a metric continuum.
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Since a(Mr ) = T, and ¢(T;) is a point for xe X*, we obtain
(4) weo(Mz)) is a point for xeX.
Consequently,

(5) the mapping w is monotone.

In fact, if (x,t) and (x,t) are points of X§ such that we(x, 1)
=o@(x,t), then (r*(x),t)e My, (r*(x), to)eMT , and we(r*(x), to)
= we(r* (x), to) by (4). Since (p(r (x), to) o(r* (x’) to)s we infer that
oM, U M7y ) is connected by (2) and it is contained in w~ 'we(x, t). This
1mp11es that o~ !(y) is connected for ye Y. Now,

(6) wy =w|@(Y* x{ty}) is a homeomorphism from ¢@(Y* x {t,)) onto Y.

If y=(q,w,s)eY* y =(q,w,s)eY* and ga(y, to) = ga(y, ty), then
w=w =0 and s =s". Therefore, (y, to) Ro()’, to), which implies that w, is
one-to-one.

Now we will prove

(7) the mapping w is open.

It suffices to show that for each point ze Y, each sequence {z,} in Y
converging to z, and each yew™'(z) there are y,ew™'(z,) such that limy,
=y. Using (6) we can assume that yew '(z)\@(Y*x {t,)) and let
(x,)e@~'(y). If t=t,, then we have ¢(x, )ee(Y*x{t,}) because
(r*(x), to)Ro(x, to) and (r*(x), to)e Y* x {t}. This contradiction shows that
t # to. Since (x, t)e X§, we obtain a(x, t) = x¢ Y*. It follows from the proof
of the openness of r in Example (3.2) in [19], p. 121, that there are
X, €97 1(24), Xu =(qn> Wa, Sp), Such that x, — x. In particular, if x =(q, w, s),
then w, —»w. Since teN,, N, —N,, (cf. (1)), we conlude that there are
t,e N, such that t, —»t. Then (x,,, t,) = (x, t), ga(x,, t,) =z,. Thus @(x,, t,)
- (p(x t) =y and y, = @(x,, t)ew ' (z,), which completes the proof of (7).

(8) @™ '(y) is non-degenerate for each yeY.

In fact, if yeY, then there is x =(q, w, s)e X*\Y* such that g(x) =
Therefore, w # 0 and there is te N,\{to}. Since (g, w, s, t)Ro(q’, 0, 5, to)
and t # t, implies w = 0, we infer that ¢(x, Hew ' (y)\w; (), ie, @~ 1(y)
is non-degenerate.

Since (x, to) Ro(r*(x), to), we obtain @(x, to)ewy ' (Y). Thus

(9) 1™ (to) = @y 1 (Y)-

It remains to prove property (iii). If xe X* and re N, then we put

My = {(y, e X§: yeT,].

(10) The set M; is a continuum.

Indeed, if wo = min {we[0, 1]: teN,,}, then M7 is homeomorphic to
the set {yeT.: y=(q,w,s) and w > w,} which is an arc or a point.

(11) If me M\w;'(Y), then @ '(m) = M} for some xe X* t >0, and
ap~1(m) c X*\Y*.
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Indeed, if @(y, ) =@(),t)=m, then t=t'>0 and y, ye T\Y* for
some x€ X* by the definition of the relation Ry (¢ (y, to)ew; * (Y) for each y).

Now, assume that (x, t)e ¢~ ' (M\w; ! (Y)). Then we have xe X*\Y* and
a(¢ ™! (M\w; }(Y))) = X*\Y* by (11). The construction of X* implies that
there are closed-open sets W/ in X*\Y* such that

N gW)=g(x) and xeW; fori=1,2,...
i=1
Sets W, =a "' (W) n¢~ ' (M\w; (Y)) are closed-open in M\w; !(Y) because

¢ '(Moit(y) ca ' (X*\Y*). From (10) and (11) we conclude that
@~ (W) = W,. Therefore, V. = ¢ (W) are closed-open in M\w; !(Y). Since

s

(V) =

1 i

158

gap™ ' (V) = _51 go(W) = .-51 g(W) =g(x),

i
we obtain

o (V) =g (x) = wo(x, 1),

1

"DS

i.e., condition (iii) is satisfied.
If F < M\[0, 1] is a continuum, then condition (iii) implies that w(F) is
a point. Moreover, if (x, t), (X, )e ¢~} (F), then x, x'€ T,, for some x,€ X *
because ¢~ !(F) is a continuum by (10) and (11). Therefore (x, t) Ry (x’, 1). It
follows that u|F is one-to-one, which completes the proof of Theorem 4.
One can observe that small modifications of the proofs of Lemma 3,
Lemma 4, and Theorem 1 in [17] give the following

LEMMA. Every curve X is the inverse limit of an inverse sequence |P;, m, ;}
with one-dimensional polyhedra P; and with bonding maps m;;: P; - P; such
that ©;;} (1) is finite for all teP; and i, j=1,2,...

THEOREM 5. Let N be an arbitrary continuum, toe N, and let X be a
curve. Then there are a continuum Y containing X, a monotone open retraction
r from Y onto X, and a continuous mapping h from Y onto N such that

(i) r~!(x) is non-degenerate for each xe X;

(i) h™'(to) = X;;

(ili) if F is a quasi-component of Y\X, then F —cr~!(x) for some xe X,

(iv) if F < Y\X is a continuum, then h|F is a homeomorphism.

Proof. It follows from the Lemma that X is the inverse limit of an
inverse sequence |X;, m; ;] with bonding maps =; ; such that point inverses
under =; ; are finite and with one-dimensional polyhedra X;. Put ;;,_, = m;
for brevity. Of course, we can assume that X, = [0, 1]. We will define, by
induction on i, the following sequences: continua X, continua Y,, maps
mi+y: Xiyy— X, maps g;: X;—» X;, maps r;: Y;> X;, and maps a;,,:
Y,,, = Y; all this in such a manner that
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(1) g; is a homeomorphism from X; onto X;;

(2) X; <Y, and r; is an open monotone retraction from Y; onto Xi;

(3) if y is a point in Y,\X, then there are closed-open sets V, in Y\X; such
that (\ r;(V,)=ri(y) and yeV, for n=1, 2, ...

n=1 g

(4) the diagram

Y x Y

Xig =X

is exactly commutative (for definition see [20]);

(5) a;|r7t(t) is a homeomorphism from r;'(t) onto r_\(ni(t)) for each
te X;.

It follows from Theorem 4 that there are a continuum M containing
[0, 1] and mappings u and o satisfying (i){iv) of Theorem 4. Put Y,
=M, X, =X =[0, 1], r, = w, and g; = ido,;;. Then conditions (1)3) are
satisfied. Moreover,

(6) u is a mapping from Y, onto N such that p~'(to) =X, and if
F c Y,\X is a continuum, then u|F is a homeomorphism.

Now assume that we have already defined Y;, X, r;, g;, a;, =] for all

i < k in accordance with (1)«5) for i < k. Let f and y denote the projections
from X,., xY;, onto X,., and Y,, respectively. Put
Yeir = {(x, V)€ Xps1 X Vit My 1 (%) = gere ()},
Xie1 ={(x, Ve Yisy: ye Xy,
G+1 () =B for te Xy, Mo () =7() for teXi,,,

a1 () =7(@) for teYoyy, reey(8) =gid 1 B for te¥,,.
Since Xj,1 = {(x, )€ X3+ x Xi: ¥y =gz ' M1 (x)}, we infer that X;,,
is a graph of g; ! m,, . Therefore,
(7) gx+1 is a homeomorphism from X;,, onto X, ,,.
Since 11| Xie1 =Bl Xrs1)” (B X} +1), we conclude that
(8) ry+1 is a retraction from Y, ., onto Xi,;.
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Since
Fer1 (%, y) = {(x, Y) € Xis1 X Yoyt Yery gy ' mes 1 (X)),

we infer that

9) aprilriti(x,y) is a homeomorphism from ril (x,y) onto
e ' g ' My oy (x) for each (x, y)e Xiy,.

Conditions (7)«9) imply

(10) Y;,, is a continuum and r,,, is monotone.

If My 1(x) =gxre(y) and yeX;, then m.,(x, y) =y and

gt M1 G (%)) =Gk " Tes 1 (0 = g L g ) = 95 19 () = .

Hence

(11) Ty =Gk " Txs 1 Gas1-

In particular, if (x, y)e Y4, then me,;(x) = giri(y); thus reoy .y (x, y)
=r,(y) and

Tty Te+1(X, Y) =gk ! T+ 19k+1 gk—+ll B(x; V) =gi ! T+ 1(X)
= gk_l g (y) =1 (y).
Thereby,

(12) reogsy = Mhs g Tysq-

Now, let yeY, and (X, y)e X;,, be such that r,(y) = m4, (X, y).
Since m,.,(x, y) =r.(y) =), we obtain r,(y)=y. Take t =(x/, y). Then
equalities g, 7, (y) = g, (y) = g e (V) = M4 1 (X) give € Yy 4y . Since iy (X', y)
=g  (x) =rs 1 (X, ) and o, (X, y) = y, we infer that condition (4) holds
for i=k+1 by (11) and (12).

ut (xm yn) —*(x’ _V), (xm yn)a (X, y)ex;:+l and (x'9 y,)erk_+ll (x9 y) Then
T+ 1 (Xns Vo) = Va€ Xis Mt (X, ) =y€Xi, Ya—= Y, %1 (X, y)=y€el, and
r,(y') = y. Since r, is open, there are y,er, '(y,) such that y, — y'. Since

X =@Gk+1 gk—+ll (X) = gr+1 gk—+ll B(x, ) = Grs 11X Y) =G+ 1 Ti+1 (X, ¥)
=0Gk+1 gk_+ll B(X, y) = gx+1 gk-+ll (x) = x|,

we obtain (x,, y,) — (X', y). Moreover, (x,, y,)€ Y+, because g, 7, (y) = g (V)
= gkrk(yn) =T+ (xu)’ and (xm y:l)erk_-l-ll (xna Yn) because 9k +1 rk+l(xm y:l)
= X, = gx+1"k+1(Xn, yo- This completes the proof that r,,, is open.

It remains to prove condition (3) for i = k+1. Observe first that

(13) oy (N\XD) = Yt (\ XG4y

Indeed, if (x, y)e Y, and a,,,(x, y)e X}, then o, ,(x, y) = yeX,, ie,
(x, y)€ X} +, by the definition of X;,,. .

Now, let ye Y, \Xi+;. Then a,,,(y)e Y,\Xi. Therefore, there are

closed-open sets V, in Y,\X;,, such that () r,(V,) =r(ax+1 ) Var1 = Vs
n=1
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and o, (eV, for n=1,2,...by (3) for i =k. Sets W, =a.},(V,) are
closed-open in Y, ;\X,+; by (13).

Since X, ., is closed in Y, sets V, are open in Y,. We infer that sets
n., gu 1 (V,) are open in X,, . Furthermore,

Ger1her1 e ginco e () = 01 Ter1. Gk T (V).

Since the set m,}; gi i %+ (¥) is finite, for each n =1, 2, ... we can find the
decomposition of the set n,.}, g, r.(V,) into two disjoint open sets G, and H,
such that

ao
Gr1Te+1 () = 01 G,.

Take V., =r;y9cd1(G)nH, for n=1,2,... Every set ¥, is open. It is
closed because its complement in W, is open, being equal to the set
red1Ges (H) O W,

Let

Wi j =0y nn Oy M =TMyq ... for i<j,
Y= Inv lim {Y"’, %}, X' =Invlim{X], nj;},

let r be a mapping from Y onto X' induced by !r;}, and g a mapping from X’
onto X induced by {g;}. Of course, g is a homeomorphism from X’ onto X.
It follows from Theorem 4 in [20], p. 61 (cf. [4]), that r is an open monotone
retraction from Y onto X'. '

Let 6; denote the projection from Y onto Y, and yeY\X'. Then
0;(y)e Y\X; for eachi =1, 2, ... It follows from (3) that the quasi-component
F of the point y in Y\X’ is contained in 6; ! (r;(J;(y))) for each i=1,2,...
Therefore, r(F) is a one-point set, i.e., (iii) holds.

If F is a continuum in Y\X’, then r(F) is degenerate. From (5) we
conclude that &, |r~!(¢) is a homeomorphism from r~!(¢) onto ry ' (r, 8, (1)).
Therefore, the composition h = uod, has all required properties, and the
proof of Theorem 5 is complete.

From Theorem 5 we obtain the more general result:

CoRrOLLARY 1. Let X and N be arbitrary continua and toe N. Then there
are a continuum Y containing X, a monotone open retraction r from Y onto X,
and a continuous mapping h from Y onto N such that

(i) r~'(x) is non-degenerate for each xec X,

(i) h™(t0) = X,

(iii) if F is a quasi-component of Y\X, then F cr™'(x) for some xe X,

(iv) if F < Y\X is a continuum, then h|F is a homeomorphism.

Proof. It is known (see [22]) that if % is the Menger universal curve
and Q is the Hilbert cube, then there is an open and monotone mapping «
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from % onto Q. We can assume that X < Q. It follows from Theorem 5 that
there are a continuum M containing %, a monotone open retraction @ from
M onto %, and a continuous mapping x from M onto N such that o' (y) is
non-degenerate for each ue%, u~'(to) = %, if F is a quasi-<component of
M\%, then F = ™' (u) for some pe %, and if F =« M\% is a continuum, then
u| F is a homeomorphism.

Let M'=w ™ 'a"!(X) and define an equivalence relation ~ on M’ by
m~mem=m or mmed and a(m)=a(m). Put Y=M'/~ and let
¢@: M’ - Y be the quotient map. Define X' = o(% N M), r(y) = pwo~'(y)
and h(y) = up~'(y) for yeY and g(y) = awe ! (y) for ye X'

One can easily check that g is a homeomorphism from X’ onto X and
that Y, r, and h satisfy all required conditions. The openness of r is the most
doubtful, thus we check only it. It suffices to show that if x, - x, x,, xe X',
and yer~'(x), then there are y,er '(x,) such that y,—y. Let meo~1(y)
and acp '(x)n%. Since g(x) =awe ! (x) =aw(a) =a(a) and ¢@(a) =x
=r(y) = pwo~1(y) = pw(m), we obtain g(x) =a(a) = aw(m). Thus, since
g(x,) = g(x) = aw(m) and a is open, there are u,e % such that a(u,) = g(x,)
and yu, — w(m). Since w is open, there are z,ew ™! (u,) such that z, - m. Then
®(z,) = @(m) = y. But

gro(z,) = 0w~ ! 0o~ ¢(z,) = awe ™! pw(z,)
=awe ' o1, = ao (u,) = a (i) = g(x,).

Since g is a homeomorphism, we have ro(z,) = x,, i.., ¢(z,)er™'(x,), which
completes the proof.

Recall that if X is a continuum, then a decomposition Z of X is said to
be admissible if & is upper semi-continuous and monotone and for every
irreducible continuum I in X every layer T;, 0 <t < 1, of I is contained in
some element of 2. If % is a hereditarily arcwise connected continuum, then
 is a curve. Therefore, taking a pseudo-arc as the continuum N in Theorem
5 we obtain the following solution of problems of Krasinkiewicz and
Charatonik (see [2], Problems 2 and 3, p. 148).

CorOLLARY 2. If Y is a hereditarily arcwise connected continuum, then
there exists a continuum X every stratum of which is a non-trivial stratum of
continuity and such that Y is the decomposition space of the canonical
admissible decomposition of X. ’

3. Strongly homotopically stable mappings. A mapping f: X - Y of
spaces is said to be strongly homotopically stable if f homotopic to g: X - Y
implies f= g. ,

Recall that a mapping f from a space X onto a space Y is locally
confluent if for each point y of Y there is an open set % containing y such
that f| f~!((Cl%)) is confluent.
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THEOREM 6. Suppose f is a locally confluent and light mapping of a
compactum X onto a compactum Y. Then there are arbitrarily small closed
neighbourhoods % of x in X such that | is confluent.

Proof. Since fis light, there is a finite open (in X) covering %,, ..., %,
of f~1f(x) such that the union of the boundaries of %,, ..., %, is disjoint
with f~1(f(x)). Then

B= U £(6d%) < Y\(f (x)}.

Therefore, we can find a closed neighbourhood V of f(x) which is disjoint
with B and such that f|f !'(V) is confluent. Consider the sets A;
=¥, nf "1 (V). Then f(A4;) =f (%)~ V. Since the components of f~*(K) for
each continuum K < ¥V are disjoint with the boundaries of %,, ..., %,, each
such component must be contained in A4; or disjoint with it. Therefore, f| A,
is confluent for i =1, ..., n, which completes the proof.

The following corollary answers in the affirmative Problem 1010 of [12].

CoroLLARY 3. If f X - Y is a light open mapping of compacta, then for
each xo€ X there exist arbitrarily small closed neighbourhoods U of x, such
that f (xo)eIntf(U) and f|U is confluent.

The next corollary gives a positive solution to Problem 16 of UHPB.

CoOROLLARY 4. Suppose f is a locally confluent and light mapping of a
compactum X onto a locally connected compactum Y. Then for each xo€ X
there exist arbitrarily small closed neighbourhoods U of x, such that
f(xo)eIntf (U) and f| % is confluent.

Proof. This follows from Theorem 6 and the observation that the
closed neighbourhood V in, the proof of Theorem 6 can be taken to be
connected.

By a curve is meant a one-dimensional continuum. A curve is said to be
locally acyclic at a point xoe€ X provided there exists a subset 4 of X such
that xo,eInt A and each mapping of 4 into the circle is homotopic to a
constant mapping.

The following is an extension of a result of Lelek ([12], 3.3) to non-
locally connected spaces. It is an immediate consequence of Corollary 3 and
[12], 2.2.

COROLLARY 5. If f: X — Y is a light open mapping of a compactum X onto
a curve Y such that Y is not locally acyclic at any point, then f is strongly
homotopically stable.

The next example shows that the condition in Corollary 5 that f be light
is necessary. It also answers in the negative Problems 15 and 18 in UHPB.

Example 2. Let Z be a continuum constructed as in Theorem 5 so that
Z admits a monotone open retraction ¢: Z — S, where S is a Sierpinski
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universal curve, @~ !(x) is a smooth fan for each xeS, the set of end-points
of Z is zero-dimensional, and each component of Z\S is a homeomorph of
(0, 1] whose closure meets S in exactly one point (such Z we obtain taking
N =[0,1] and t, =0 in Theorem 5). We indicate a proof that ¢ is not
strongly homotopically stable.

Let a and b be end-points of the closure of some component of Z\S with
beS and let f be an arbitrary mapping from S U {a} into S such that f|S is
the identity and f(a) # b. From Theorem 1 in [9], p. 347, we conclude that
there is a mapping f*: Z — S which is an extension of f. Then f* # ¢ and
f* is homotopic to ¢.

We complete this section by giving an example to show that the
condition in Corollary 4 that Y be locally connected is necessary. The
example also answers in the negative Problem 36 in UHPB.

Example 3. Let (x, y) denote a point of the Euclidean plane having x
and y as its rectangular coordinates and let P denote the standard (sin 7t/x)-
curve, i€,

P = {(x, sinn/x): 0 <x < 1}.
Consider the set
X={x,y: (x,y—1)eP or (—x, 2(y+3/2)eP}u {(0,y): —2<y<2}

and a mapping f(x, y) =(x,|y]). Then f is locally confluent and weakly
confluent. No small neighbourhood of (0,2) in X is mapped onto a
neighbourhood of (0, 2) in f(X) and there is no subcontinuum Lof X such
that f(L) =f(X) and f| Lis confluent.

4. Continuous decompositions of plane curves. Let
P =Cl{x, sinl/x): 0 <x <1} UCl{(x,sin1/2—x)): 1 < x <2}.
and for ¢ >0
Q*=Cl{(x, y): sinl/x—ex <y <sinl/x,0<x< 1}y
UCl{(x, y): sin1/2—x)—(2—x)e <y <sinlf2—x), 1 < x <2}.

We can call {0} x[—1, 1] and {2} x[—1, 1] the end slices of Q°. It is easy to
see that Q has a continuous decomposition onto an arc so that each fiber of
the decomposition is an arc of diameter at least 2—2e.

Krasinkiewicz [7], Theorem 3.4, proved that if X is a continuum which
is obtainable as the continuous decomposition of a plane continuum where
each fiber of the decomposition is a decomposable non-degenerate con-
tinuum, then each cyclic element K of X is a plane completely regular
continuum (i.e, each non-degenerate continuum in K has non-void interior
in K). Krasinkiewicz asked in [7] (Problem 1) and in UHPB (Problem 119)

4 — Colloquium Mathematicum XLIX.2
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whether the converse to this theorem is true. In the next theorem we shall
give a partial affirmative solution to this problem.

We remark that the condition that the fibers be decomposable in
Krasinkiewicz’s theorem is necessary since every plane continuum can be
obtained as the continuous decomposition ¢f 2 plane continuum with all
fibers being pseudo-arcs [14].

THEOREM 7. If X is a completely regular plane continuum, then there exist
a plane continuum Y and a monotone open mapping f- Y— X such that f ! (x)
is an arc for each xe X.

Proof. By [5], Lemma 2, we have X = FU A4, UA,uU ..., where F is a
Cantor set, each A4; is an arc with end-points a;, b; such that Fn 4;
={a;, b}, AinA; =@ for i #j, A\|a;, b;} is open in X for each i, and the
sequence (A4;) is a null sequence.

We may suppose the space X is embedded in the plane R? in such a
way that F = C is a Cantor’s ternary set in the interval [0, 1] x {0}. Let
n,: R* > Rx {0} and n,: R* - {0} xR be the natural projections onto the
x-axis and y-axis, respectively. ‘

Notice that for each component U of [0, 1] x {0}\C there exist at most
finitely many integers i such that n, (4;) > U. We may suppose (since (4;) is a
null sequence) that for each i there exist sequences (a;;) and (b;;) in A4;
convering to a; and b;, respectively, such that =, (q; ;), m,(b;;) > 0 for odd j
and m,(a;;), ny(b;;) <O for even j.

We may suppose that if (c;) is a convergent sequence of distinct points in
A;n[0, 1] x {0}, then limc;e {a;, b;}. We suppose that if A is an arc con-
tained in A;\{a;, b;}, then A is rectifiable. Finally, we suppose that if
ceA; N[0, 1]x {0} and c¢ {a;, b;}, then each neighbourhood of ¢ in 4; meets
both n; (0, ) and n; '(—o0, 0). Define #: R? - R? by

(x, y) if y<0,
9(x,y)={(x,0) f0<y<]1,

Let Y! =607 '(X). Then 6~ '(x, 0) is an arc for each (x, 0)eC and 6~ '(4,) is
homeomorphic to P for each integer i. For each i there exist continua Q; in
R? homeomorphic to Q! such that 6~ !(a;) and 0~ !(b;) are the end slices of
Q:, 67'(A) is contained in the boundary of Q;,, Q;nQ;=0Q for i+#j,
Q;nY!'=0"1Ya)u0 '(b), Q; admits a (1/i)-retraction onto A;, and O,
admits a continuous decomposition whose fibers are arcs of diameter greater
than or equal to 1—2/(i+2) onto an arc. Then Y=Y!'uQ,uQ,u ... is a
plane continuum which admits a continuous monotone decomposition onto
X and such that each fiber is an arc.
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5. Further examples. Remark that Example 2 in [16] solves negatively
Problem 100 in PBUH (this problem concerns open' mappings on smooth
dendroids).

Example 4. Let B denote a Knaster’s indecomposable continuum with
only one end-point b. Joining two disjoint copies of B at the point b we
obtain an arc-like continuum R without end-points. It is known that there is
a continuous mapping f from a pseudo-arc P onto R (see [10]) and every
such mapping is weakly confluent. There is no point p in P such that if K is
a subcontinuum of R containing f(p) and C is a component of f~!(K)
containing p, then f(C) = K (by the hereditary indecomposability of P). This
solves Problems 55 and 56 in PBUH.

Example 5. It is known (see [3]) that there are a hereditarily decom-
posable chainable continuum K < {(x, y)e R%: x > 0} and a weakly conflu-
ent mapping f from K onto a simple triod T= {(x,00eR*: 0<x <1} Ul,
where I = {(0, y): —1 <y < 1}. Moreover, if ¢ is a canonical monotone
mapping from K onto [0, 1], then ¢~ '(t) are arcs, ¢~ '(0) =1, f (¢~ (0))
=1, and f (¢~ ([0, ) # T for t < 1.

Take X = KU {(x, sinn/x): —1<x <0} and a mapping f* from X
onto f*(X) such that f*(x) = f(x) for xe K and {x} =f"! f*(x) for xe X\K.
The set X is a chainable continuum, f*(X) is a non<chainable continuum, f*
is weakly confluent, and there exist no subcontinuum X’ of X mapped onto
S*(X) under f* (each such X’ is equal to X in our example) such that f*| X’
is not weakly confluent. In this way Problem 58 in PBUH has a negative
answer.
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