A simple boundedness theorem
for a Liénard equation with damping

by Junji Kato (Sendai)

Zdzisław Opial in memoriam

As we can see in the notable book [4], in order to see the boundedness of the equation
(1) \[x'' + f(x)x' + g(x) = e(t) \]
or the equivalent system
(2) \[x' = y - F(x) + E(t), \quad y' = -g(x) \quad \text{on } \mathbb{R}^2, \]
where \(F(x) := \int_{0}^{x} f(u)du \) and \(E(t) := \int_{0}^{t} e(s)ds \), there are quite various methods in constructing a family of closed curves on \(\mathbb{R}^2 \) which serve to prove the boundedness of the solutions of (2). It is well known that under the conditions
(3) \[xF(x) \geq 0, \quad xg(x) \geq 0, \quad G(x) \to \infty \quad (|x| \to \infty), \quad e(t) \equiv 0, \]
where \(G(x) := \int_{0}^{x} g(u)du \), the continuous family
(4) \[V(x, y) := \frac{1}{2}y^2 + G(x) = c \quad \text{with a parameter } c \]
provides such a family. However, in the most of the cases, some of the conditions in (3) are replaced with weaker conditions, and such a closed curve is obtained by connecting several arcs in a skillful way. It is also attempted to get such a family as a continuous family caused by a single Lyapunov function, but an eligible Lyapunov function is usually constructed in a patched work by a finesse, cf. [6]; p. 41.

When \(xg(x) \geq 0 \ (|x| \geq a), \ F(x) \operatorname{sgn} x \to \infty \ (|x| \to \infty) \) and \(|E(t)| \leq M \) for constants \(a \) and \(M \), Mizohata and Yamaguti [2] have presented an idea to construct a Lyapunov function in a rather simple manner, that is,
\[V(x, y) := \frac{1}{2}(y - d(x))^2 + G(x) \]
is a desirable Lyapunov function if \(d(x) \) is given by

\[
d(x) := \begin{cases}
L, & x \geq b, \\
\frac{L}{b} x, & |x| \geq b, \\
-L, & x \leq -b
\end{cases}
\]

for an \(L > 0 \) and a \(b \geq a \) such that \(F(x) \text{sgn} x > M + L \ (|x| \geq b) \). It is not difficult to see that \(V(t, x, y) \leq 0 \) outside a bounded set, which guarantees the boundedness of the \(y \)-component of the solution, while that of the \(x \)-component follows from the first equation of (2) when \(y(t) \) is bounded.

In this article, it will be shown that by generalizing their idea we shall state a boundedness theorem whose proof is supplied by a Lyapunov function constructed in a simple manner similar to \([2]\) but which is general enough to make the theorem due to Graef \([1]\) as its corollary.

Consider the system

\[
x' = \varphi(y) - F(t, x, y), \quad y' = -g(x),
\]

where \(\varphi(y), F(t, x, y) \) and \(g(x) \) are continuous in their arguments. Then, we have the following theorem.

Theorem. Suppose the following conditions:

(i) \(xg(x) \geq 0 \ (|x| \geq a) \) for an \(a > 0 \);

(ii) there are constants \(\delta > 0 \) and \(c, M \in \mathbb{R} \) such that

\[
\{F(t, x, y) - c\} \text{sgn} x \geq \delta \quad \text{if} \ |x| \geq a,
\]

and

\[
|F(t, x, y)| \leq M \quad \text{if} \ |x| \leq a,
\]

whatever \(t \geq 0 \) and \(y \in \mathbb{R} \) are;

(iii) for any \(\gamma \) and \(\beta > 0 \) there are \(x^- < 0 \) and \(x^+ > 0 \) such that

\[
G(x^\pm) \pm F(t, x^\pm, y) > \gamma \quad \text{for all} \ t \geq 0 \ \text{and} \ y \in [-\beta, \beta];
\]

(iv) \(\varphi(y) \text{sgn} y \to \infty \) as \(|y| \to \infty \).

Then the solutions of (5) are uniformly bounded, and if condition (i) is strengthened to

(i*) \(xg(x) > 0 \ (|x| \geq a) \),

then they are uniformly ultimately bounded.

Proof. Set

\[
V(x, y) := G(x) + \Phi(y) - d(x)y,
\]
where $\Phi(y) := \int_0^y \phi(u) du$ and

$$d(x) := c + \begin{cases}
\varepsilon & \text{if } x \geq a, \\
\frac{\varepsilon}{a} x & \text{if } |x| \leq a, \\
-\varepsilon & \text{if } x \leq -a
\end{cases}$$

for an $\varepsilon \in (0, \delta)$. Since $|d(x)| \leq |c| + \varepsilon =: d_0$ and since

$$G(x) \geq \int_{a \cdot \text{sgn } x}^x g(u) du - \int_{-a}^0 |g(u)| du,$$

$$\Phi(y) - d(x)y \geq \int_0^y (\phi(u) - d_0 \text{sgn } u) du,$$

the function $V(x, y)$ is bounded from below and we have

$$V(x, y) \to \infty \quad \text{as } |y| \to \infty \quad \text{uniformly in } x \in \mathbb{R}.$$ \hspace{1cm} (6)

On the other hand, by calculating the derivative

$$V'(t, x, y) = \phi(y)(-g(x)) + g(x)(\phi(y) - F(t, x, y))$$

$$-d'(x)y(\phi(y) - F(t, x, y)) - d(x)(-g(x))$$

$$= -g(x)(F(t, x, y) - d(x)) - d'(x)y(\phi(y) - F(t, x, y))$$

along the solution of (5). Therefore, we have

$$V'(t, x, y) \leq -g(x)(F(t, x, y) - c - \varepsilon \cdot \text{sgn } x) \leq - (\delta - \varepsilon)|g(x)|$$

if $|x| \geq a$, while when $|x| \leq a$,

$$V'(t, x, y) \leq -\frac{\varepsilon}{a} y(\phi(y) - M \cdot \text{sgn } y) + (M + \varepsilon) \max_{|x| \leq a} |g(x)|,$$

which implies

$$V'(t, x, y) \leq -\eta \quad (|x| \leq a, \ |y| \geq b)$$

for a $b > 0$ and an $\eta > 0$ by condition (iv). Hence, we have

$$V'(t, x, y) \leq -\min \{(\delta - \varepsilon)|g(x)|, \ \eta\} \leq 0$$ \hspace{1cm} (7)

if $V(x, y) > \alpha_0$, where $\alpha_0 := \max \{V(x, y) : |x| \leq a, \ |y| \leq b\}$. This implies that for any $\alpha > \alpha_0$ the set

$$V_\alpha := \{(x, y) : V(x, y) \leq \alpha\}$$

is positively invariant, that is, for any $(\xi, \zeta) \in V_\alpha$ a solution of (5) starting at (ξ, ζ) at $t = \tau$ belongs to V_α for all $t \geq \tau$.

By (6) there is a $\beta = \beta(\alpha) > 0$ such that

$$V(x, y) \leq \alpha \quad \text{implies} \quad |y| \leq \beta(\alpha),$$
while condition (iii) guarantees the existence of a $q = q(x, r) > r$ for any $r \geq a$ such that

$$G(q^+) > \gamma_0(\alpha) \quad \text{or} \quad \inf_{|y| \leq \beta(\alpha), t} F(t, q^+, y) > \gamma_1(\alpha)$$

for a $q^+ \in (r, q(\alpha, r)]$ and

$$G(q^-) > \gamma_0(\alpha) \quad \text{or} \quad \sup_{|y| \leq \beta(\alpha), t} F(t, q^-, y) < -\gamma_1(\alpha)$$

for a $q^- \in [-q(\alpha, r), -r)$, where

$$\gamma_0(\alpha) := \alpha + d_0 \beta(\alpha) - \inf_{|y| \leq \beta(\alpha)} \Phi(y) \quad \text{and} \quad \gamma_1(\alpha) := \sup\{|\varphi(y)|: |y| \leq \beta(\alpha)\}.$$

Thus, we can show that for any given $r \geq a$ we can choose $\alpha = \alpha(r) > \alpha_0$ so that $D_r := \{(x, y): x^2 + y^2 \leq r^2\} \subseteq \mathcal{V}_{a_0}$, and hence any solution of (5) starting from D_r at $t = \tau$ must stay in $\{(x, y): |x| \leq q(\alpha(r), r), |y| \leq \beta(\alpha(r))\}$ for all $t \geq \tau$. This means that the solutions of (5) are uniformly bounded, and also we can find an $A(r) > \alpha_0$ such that any solution of (5) starting from D_r stays in $\mathcal{V}_{A(r)}$ for ever.

If condition (i*) is satisfied, then we have

$$V'(t, x, y) \leq -\eta^* \quad \text{on the complement of } \mathcal{V}_{a_0}$$

for an $\eta^* > 0$. Therefore, any solution of (5) starting from D_r at $t = \tau$ can not keep off from \mathcal{V}_{a_0} in the whole interval $[\tau, \tau + T_r]$, where $T_r := (A(r) - \alpha_0)/\eta^*$, and hence the solution must stay in \mathcal{V}_{a_0} for all $t \geq \tau + T_r$, while we can see that the x-component will remain in $\{x: |x| \leq q(\alpha_0, a)\}$ if $t \geq \tau + T_r + T_2(r)$, where $T_2(r) := 2\beta(\alpha(r))/v(r)$ and $v(r) := \inf\{|g(x)|: a \leq |x| \leq q(\alpha(r)), r\}$.

This proves the uniform ultimate boundedness of the solutions of (5).

Example 1. For the system

$$x' = y - F(x) + E(t), \quad y' = -g(x),$$

Graef [1] has shown that the solutions are uniformly ultimately bounded if

(a) $xg(x) > 0$ ($|x| \geq a$);

(b) $|E(t)| \leq \gamma$;

(c) $xF(x) \geq \gamma |x|$ ($|x| \geq a$);

(d) $xF(x) \geq (\gamma + \epsilon)|x|$ for $x \geq a$ or for $x \leq -a$, where $\epsilon > 0$ is any given number;

(e) $G(x) + F(x)\text{sgn } x \to \infty$ ($|x| \to \infty$).

Since conditions (c) and (d) imply that

$$\left(F(x) - E(t) - \sigma \frac{\epsilon}{2}\right)\text{sgn } x \geq \frac{\epsilon}{2}$$

for $|x| \geq a$, where $\sigma = 1$ if the relation in (d) holds for $x \geq a$ and $\sigma = -1$ otherwise, all the conditions in the theorem are satisfied.
Example 2. Wu [5] has considered the existence of a nontrivial periodic solution of the system

\[x' = \varphi(y) - F(x), \quad y' = -g(x) \]

under the conditions:

(a) \(xg(x) > 0 \) (\(x \neq 0 \)), \(G(x) \to \infty \) (\(|x| \to \infty \));
(b) \(xF(x) < 0 \) for small \(|x| > 0 \), \(F(x) \geq k \) (\(x \geq a \)), \(F(x) \leq k' < k \) (\(x \leq -a \));
(c) \(y\varphi(y) > 0 \) (\(y \neq 0 \)), \(\varphi(y) \sgn y \to \infty \) (\(|y| \to \infty \)).

Obviously, all the conditions in the theorem are fulfilled, because

\[(F(x) - c)\sgn x \geq \delta > 0 \quad (|x| \geq a) \]

with \(c = (k + k')/2 \) and \(\delta = (k - k')/2 \). Therefore, the solutions of (9) are uniformly ultimately bounded, and hence the conclusion follows from the Theorem of Poincaré–Bendixson, where we should note that the origin is a unique critical point and unstable.

Remark. It should be stated that there are many examples which are not covered by our theorem. For example, Opial [3] has shown that under the conditions:

(a) \(|e(t)| \leq m \);
(b) \(\liminf_{x \to \infty} g(x) > m, \limsup_{x \to -\infty} g(x) < -m \);
(c) \(\lim_{|x| \to \infty} F(x)\sgn x = \infty \);
(d) \(\liminf_{|x| \to \infty} \{|F(x)|[|F(x)| - 2m] - 4m|x|\} > -\infty \) for a \(0 < p \leq m/2 \)

the solutions of the system

\[x' = y - F(x), \quad y' = -g(x) + e(t), \]

which is equivalent to (1), are uniformly bounded. Our theorem does not cover this example. However, when \(e(t) \) is \(\omega \)-periodic, there is a \(\mu := \frac{1}{\omega} \int_0^\omega e(s)ds \) and \(E(t) - \mu t \) is bounded, and hence by applying the theorem to the system

\[x' - y - F(x) + E(t) - \mu t, \quad y' = -g(x) + \mu \]

instead of the system (10) we can see the ultimately boundedness of the solutions of (1), and we can present weaker conditions for it.

References

Reçu par la Rédaction le 17.09.1987