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A simple boundedness theorem
for a Liénard equation with damping
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Zdzislaw Opial in memoriam

As we can sec in the notable book [4], in order to see the boundedness of
the equation

(1) X" +f(x)x’ +g(x) = e(t)
or the equivalent system
(2) x =y—F(x)+E(), y =—-g(kx) on R?

x t

where F(x):= [f(u)du and E(t):= [e(s)ds, there are quite various methods in
0 0
constructing a family of closed curves on R* which serve to prove the

boundedness of the solutions of (2). It is well known that under the conditions

3) xF(x})=20, xg(x)=0, G(x)»o (x]—>x), e()=0,

where G(x):= jg(u)du, the continuous family
0

) V(x, y):=4y*+G(x) = ¢ with a parameter ¢

provides such a family. However, in the most of the cases, some of the
conditions in (3) are replaced with weaker conditions, and such a closed curve
is obtained by connecting several arcs in a skillful way. It is also attempted to
get such a family as a continuous family caused by a single Lyapunov function,
but an eligible Lyapunov function is usually constructed in a patched work by
a finesse, cf. [6]; p. 41.

When xg(x) = 0 (|x| = a), F(x)sgnx —» o0 (|x]—> ) and |E(t)) < M for
constants a and M, Mizohata and Yamaguti [2] have presented an idea to
construct a Lyapunov function in a rather simple manner, that is,

Vix, y):=3(y—d(x))* + G(x)
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is a desirable Lyapunov function if d(x) is given by

L, x=b,
L
d{x):= < R |x| = b,

for an L>0 and a b > a such that F(x)sgnx > M+ L (x| > b). It is not
difficult to see that V}5)(t, x, y) < 0 outside a bounded set, which guarantees the
boundedness of the y-component of the solution, while that of the
x-component follows from the first equation of (2) when y(t) is bounded.

In this article, it will be shown that by generalizing their idea we shall state
a boundedness theorem whose proof is supplied by a Lyapunov function
constructed in a simple manner similar to [2] but which is general enough to
make the theorem due to Graef [1] as its corollary.

Consider the system

(5) x'=@(y)—F@, x,y), y=-—g),

where ¢(y), F(t, x, y) and g(x) are continuous in their arguments. Then, we have
the following theorem.

THEOREM. Suppose the following conditions:

(1) xg(x) = 0 (x| = a) for an a > 0;

(ii) there are constants 6 > 0 and ¢, M eR such that

{F(t,x, y)y—c}sgnx =26 if |x| = a,
and
[Fit,x, ) <M if x| < a,

whatever t > 0 and yeR are;

(iii) for any y and B >0 there are x~ <0 and x* > 0 such that

G(x¥)+F(@t,x*,y)>y forall t=>0 and ye[—8, B];
(iv) @(y)sgny—> o0 as |y|— 0.

Then the solutions of (5) are uniformly bounded, and if condition (1) is
strengthened to
(i*) xg(x) >0 (x| = a),

then they are uniformly ultimately bounded.

Proof. Set
V(x, y)'= G(x)+¢(y)“d(x)y’
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y
where @(y):= | ¢(u)du and
0

d(x):=c+ < °x x| < a,

for an e¢€(0, 8). Since |d(x)] < |c|+€& =:d, and since

6> [ gWdu— | lgwldu,

a-sgn x —a

®(y)—d(x)y = [(o(u)—d,sgnu)du,
0

the function V(x, y) is bounded from below and we have
(6) V(x, yy=>oo as |y|— oo uniformly in xeR.
On the other hand, by calculating the derivative
V'(t, x, y) = o(y)(—g(x))+g(x)(e(y)— F(t, x, y))
—d'(x)y(e(»)—F(t, x, y))—d(x)(—g(x))
= —g(X)(F(t, x, y)—d(x))—d' (x)y(e(y) = F(t, x, y))
along the solution of (5). Therefore, we have
V'(t, x, y) < —g(x)(F(t, x, y)—c—e-sgnx) < —(6—e)lg(x)|
if |x] = a, while when |x| <a

V'(t, x, y) < —~y(<p(y) M -sgny)+(M +e) max |g(x)|,

[x|<a
which implies
Vi, x,y)< —n (x| <a, [yl 2 b)
for a b >0 and an n > 0 by condition (iv). Hence, we have

™) V(t, x, y) < —min {(6—¢)lg(x)], n} <

if V(x, y) > a,, where a,:= max {V(x, y): [x| <a, |y < } This implies that
for any a > a, the set

V,:={(x, y): Vix, y) < a}

is positively invariant, that is, for any (&, {)€ V, a solution of (5) starting at (&, ()
at ¢t =1 belongs to V, for all t > .
By (6) there is a f = fi(x) > 0 such that

Vix,y) <o implies |y < f(w),
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while condition (ii1) guarantees the existence of a ¢ = g(a, r) > r for any r > a
such that

G(@*)>po(@) or  inf F(t, 0%, y)>y,(®)
[yl < B(a)t
for a ¢* e(r, o(a, r)] and
Gle™)>yol@) or  sup F(,e™,y) < -—7,()
Iyl € B(a).t
for a ¢~ e[ —eo(a, r),—r), where
Yo(@):=a+dyB(a)— inf @(y) and y(@):=sup{le(): Iyl < B(x)}.
ly] € f(a)

Thus, we can show that for any given r > a we can choose a = a(r) > «, so
that D,:= {(x, y): x*+y* <r*} < V,, and hence any solution of (5) starting
from D, at t = 7 must stay in {(x, y): |x| < e{a(r), r), || < f(a(r))} for all t > 7.
This means that the solutions of (5) are uniformly bounded, and also we can
find an A(r) > ay such that any solution of (5) starting from D, stays in V,, for

ever.
If condition (1*) 1s satisfied, then we have

V'(t, x, y) < —n* on the complement of V,,

for an n* > 0. Therefore, any solution of (5) starting from D, at ¢t = 7 can not
keep off from V,, in the whole interval [1, 7+ T, (r)], where T, (r):= (A(r) —ao)/n*,
and hence the solution must stay in V,, for all ¢ > v+ T,(r), while we can see
that the x-component will remain in {x: |x| < o(xy, @)} if t = 1+ T, (r)+ T,(r),
where T,(r):= 2f(a(r))/v(r) and v(r):= inf{lg(x): a < |x| < g(a(r), r}.

This proves the uniform ultimate boundedness of the solutions of (5).

ExAMPLE 1. For the system
(8) x'=y—Fx)+E@), y=-g),
Graef [1] has shown that the solutions are uniformly ultimately bounded if
(a) xg(x) >0 (x| = a);
(b) [E@) <7;
(©) xF(x) = ylx| (x| = a);

(d) xF(x) = (y+¢)lx| for x > a or for x € —a, where ¢ > 0 is any given
number;

(e) G(x)+ F(x)sgnx — oo (Jx| = o0).
Since conditions (¢} and (d) imply that

(F(X)—E(t)—ag)sgnx = % (Ix] = a),
where ¢ = 1 if the relation in (d) holds for x > a and ¢ = —1 otherwise, all the

conditions in the theorem are satisfied.
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ExaMPLE 2. Wu [5] has considered the existence of a nontrivial periodic
solution of the system

) X' =py)—-F(x), y=—gx)
under the conditions:
(@) xg(x) >0 (x #0), G(x)—> 0 (x| c0);
(b) xF(x) <0 for small |x] >0, F(x)=2k (x=a), F(x) <k <k (x < —a);
© yo(y)>0 (y #0), ¢(y)sgny— oo (ly|— )
Obviously, all the conditions in the theorem are fulfilled, because
(F(x)—c)sgnx 26 >0 (x| = a)

with ¢ =(k+k')/2 and o0 = (k—k')/2. Therefore, the solutions of (9) are
uniformly ultimately bounded, and hence the conclusion follows from the
Theorem of Poincaré-Bendixson, where we should note that the origin is
a unique critical point and unstable.

Remark. It should be stated that there are many examples which are not

covered by our theorem. For example, Opial [3] has shown that under the
conditions:

(@) le( < m;
(b) iminfg(x) > m, limsupg(x) < —m;

() lim F(x)sgnx = oo;
Jx| = o

(d) liminf{|F(x)|[|F(x)l—2p]—4m|x]} > — oo for a 0 < p < m/2

[x] o

the solutions of the system

(10) x'=y—F(x), y=—g(x)+e),

which is equivalent to (1), are uniformly bounded. Our theorem does not cover

this example. However, when e(¢t) is w-periodic, there is a u:= éz e(s)ds and

E(t)— ut is bounded, and hence by applying the theorem to the system
X'—y—F(X)+E@)—put, y=—gx)+u

instead of the system (10) we can see the ultimately boundedness of the
solutions of (1), and we can present weaker conditions for it.
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