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1. Introduction. Let A = (a;) be a matrix such that 4, is a contin-
uous function of finite variation in R'and a; = (d;) for¢,j =1,2,...,n,
and let f be a vector all components of which are measures. In this note
we consider the system of equations

(1) y = Ay+f,

where y is an unknown vector. The derivative is understood in the distri-
butional sense. We prove some theorems on the existence and uniqueness
of solutions of Cauchy’s problem for system (i). All distributions considered
in this paper are real in R!. The sequential theory of distributions is used
(see [4]).

I am indebted to P. Antosik for his suggestions which have improved
the presentation of this paper. .

2. The mean value of a distribution at a point and integrals.
Definition 1. By a d-sequence we mean (see [3] and [4], p. 75)
a sequence of smooth non-negative scalar functions {4,} satisfying

(@) [ &(@)de =1,

(b) Op(x) = 0 for |x| > a4, where {a;} is a sequence of positive numbers
with a, — 0,

(¢) Op(x) = 0p(— ).

Definition 2. By a regular sequence for a distribution » we mean
any sequence of the form

o0

(@) = (uxdy) (2) = [ w(@—1)8,(0)dr,

—00

where {4,} is a J-sequence (see [4], p. 117 and 153).
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Definition 3 (see [3]). A distribution « takes the mean value a at
a point x, if the distribution

o(0) = 5 [u(@+ay) +u(—a+2,)]

takes the value a at 0 in the sense of [4], p. 240, i.e.
limg,(0) = a

k—o00
for each regular sequence {¢,} for v.
We introduce the notation

b
(2.1) fu(w—}—t)dt = p(x+b)—yp(x+a), where p' = u.
a
b

The mean value of the distribution f u(z+t)dt at x = 0, if exists,

will be denoted (see [3]) by
b

(2.2) f w(t)dt
a
Definition 4. By a non-negative distribution we understand a distri-
bution for which there exists a fundamental sequence whose terms are
non-negative functions.
We write u > v if the difference » —v is a non-negative distribution
(see [2]).

Definition 5 ([2], p. 718). If, for every regular sequence {g,} for
a distribution u, the sequence {|g,|} is distributionally convergent, then
we say that the modulus |u| of w exists and put

[u| = lim(d) @yl -

k—o00

The consistency of Definition 5 follows from the fact that the inter-
laced sequence of two d-sequences is also a d-sequence.

In the sequel, when saying that » is a function of finite variation,
we mean that u is of bounded variation on each finite interval and that

1
u(x) = — [lim u(y)+ lim %(y)] for every =.
2 y—»a:+ Y=

In this case the mean value of u at each point x equals u(x).

We shall need the following properties of integral (2.2) which are
proved in [3]. We assume that all integrals appearing exist. Then we
can write
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b b b
(2.3) [ (au(a) + po(2))do = o [u(@)do+p [o(x)de
for all numbers a and §B.
If w<v and a < b, then ’
b b
(2.4) fu(w)dmgfv(w)dw.

Moreover, if » is a measure, i.e. % is the derivative (of the first order
in the distributional sense) of a function of finite variation, then, for all a
b

and b, the integral [u(z)dx exists and
a

b b
(2.5) |fu(w)da;[< [ u()lda.

The following property is of great importance: if « is a function of
finite variation, then

/

(2.6) w(@) = [ w(t)dt+u(a).

3. Main results. At first we shall introduce some notation. Throughout
this paper the small letters v, 2, f, g, 0 will stand for n-dimensional vectors
and the capital letters A, B, Y,Z will denote matrices of type n X n.
If A = (a;) is a matrix whose all elements are measures, ¥ = (Y1, .-y ¥n)
is a vector all components of which are also measures, and {J,} is a J-se-
quence, then we put

R z T

Qg = Qi* Oy, Ay = Ax0, = (ayy), Ax = fAk = (fa'ijk)a
x I,
. e s

Y =Y*6 = (Yuer -y Yni)s Y = f?/k =( fylk’ crey fynk)7
20 T Zo

n
k=1,2,..., 14l = D lagl, Iyl =D Iyl

1,j=1 i=1

Moreover, by V we denote the class of all vectors all components
of which are functions of finite variations.

Definition 6 (cf. [4], p. 242). We say that the product of distri-
butions u and v exists if the sequence {(u=*d;) (v*4;)} is distributionally
convergent for every d-sequence {4,}.

THEOREM 1. Let A be a matric whose elements are derivatives of the
first order (in the distributional sense) of continuous functions of finite



298 J. LIGEZA

variation. Then the problem
(ii) y =4y, y(@) =0

has only the zero solution in the class V.

Proof. Suppose that y is a non-zero solution of problem (ii) and
that yeV. Since the elements of A are derivatives of the first order of
continuous functions of finite variation, there exists an interval (a, b)

such that
b

(3.1) J1a@ia <1,

a
Zq€ (a, b), and the vector y is continuous at the points a and b. Having
integrated (ii), from (2.3)-(2.6) we obtain the inequality

n

n b
(3.2) D suwp lyi(@) < () sup 19:(@)1) [ 14 (9)l1de.

'i=:1 Te [a!b] i-:l

Hyisa non-zero vector whose all components are functions of finite
variation in (a, b), then, in view of (3.2), we get

b
[14a@na =1

which contradicts (3.1). Thus our assertion follows.

Remark 1. The assumption of the continuity of 4, in Theorem 1
is essential. This is seen from the following

Example 1. Consider the problem
(3.3) y' =20y, y(-1)=0,

where 6 denotes Dirac’s delta distribution. From the equality HH = H,
where H denotes Heaviside’s distribution, we obtain Hé = 44 (). Since
we also have H' = 4, it follows that the distribution y = H is a solution
of problem (3.3).

THEOREM 2. Let A satisfy the assumptions of Theorem 1. Then the
problem

(iii) y =Ay, y(z,) =19°

has exactly one solution in the class V.
Proof. Let 4, = A*d,. We consider the sequence {g,} defined by

(3.4) (@) = [ A4(8)3u(s)ds+".

Zo

(*) This equality has been observed by P. Antosik.
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Hence, by Bellman’s inequality, we have

(3.5) 9u(2)] < y°lexp | [ 1 44(s)Ids] .
xy 4
Similarly,
(3.6) 9(2) — (@) < uf(Dexp | [ 14,(3)ds ],
Zo

where I is an arbitrary compact interval, ¢ I and

uf(I) = max|[|d,(8) — A,(8)111§. ()12 | +

zel
+max| [14,(e) — Ay(e)l| Ge(s)) |ds |
e xg
From (3.5) and (3.6) we infer that {g,} is almost uniformly convergent
in R'. Put
g =limg,, g, = g* 0.

k—00

In view of (3.4), we have g(x,) = y°. Moreover, for every number
e > 0 there exists an integer %k, such that

(3.7) | [ 44(5) (92(8) ~Gu(s))ds | < ¢| [ 114, (s)Ids ]
xg x

for all k¥ > k, and xe I. Hence, by [1], p. 259, we have
k—o0

Thus ¢ is a solution of problem (iii). An application of Theorem 1
completes the proof.

Example 2. The problem
(3.8) ¥y =26y, y(—-1)=1

has no solution in V. In fact, if we suppose to the contrary that y is a
solution of problem (3.8) in V, then y = ¢H +¢,, where ¢ and ¢, are arbi-
trary constants. From the initial condition we have y = ¢H +1, so that y
does not satisfy (3.8).

Example 3. The sequence of solutions of the problems
(3.9) Yy =0y, y(-1)=1
is not convergent to the solution of the problem

(3.10) y =960y, y(—1)=1.
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In fact, it is seen that y = exp(H,), where H, = H *§,, is a solution
of problem (3.9). Since

lim (d)exp (H,) = exp(H),
k—00

then
dexp(H) = (¢e—1)Hdé+ 0 = i;_—lé.
On the other hand,
(exp(H)) = ((e—1)H+1) = (e—1)8.
Hence exp(H) is not a solution of problem (3.10). One can easily
verify that the distribution 2H +1 is a solution of problem (3.10).

We adopt the definition of a fundamental matrix of solutions of
system (ii) analogous to that of [7], p. 137. Then one can show (cf. [7],
Theorem 4, p. 137) that

THEOREM 3. If a matrizx A satisfies the assumptions of Theorem 1,
then there exists a fundamental matriz of solutions of system (ii).

THEOREM 4. Let A satisfy the assumptions of Theorem 1 and let f be
a vector all components of which are measures. Then the problem

(iv) y' = Ay+f, y(@x) =9y°

has exactly one solution in the class V.
At first we prove

LEMMA. Suppose that Z is a matrix whose elements are conltinuous
functions of finite variation and y is a vector whose components are functions
of finite variation. If A satisfies the assumptions of Theorem 1, then

(3.11) A(Zy) = (AZ)y.
Y, = Y=*0, and h, = hx6,. Then
x
(3.12) f(Ak(s)zk(s)—Al(s)zl(s))ds = (Ak(s)_Al(s))Zk(s)l_:o_
Zo

— [(Au(8) = 4y(5)) (Zo(s)) ds + [ (Z(5) — Zy(8)) Ay(s)ds.
%o

Zo

x -
Hence { [ A,(s)Z,(s)ds} is almost uniformly convergent to the matrix
o

lim f Y, (s)ds.

k—o00 zg ¢
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From the equalities
(3.13) Ah = (Ah) — AW,
(3.14) Yy = (Yy) — Yy’

and [1], p- 259, we infer that both sides of (3.11) make sense. Moreover,

(315) [ yi(8) [4x(8)Z(8) — Vi (8)1ds = y,(5) By(8)|Z,— [ Bu(s) (yx(s))’ ds,

Zo o

where

Bi(@) = [(44(8)Z(8) — Yy(s))ds.

<o
By (3.15), we get
(3.16) lim(d)4,Z,y, = (AZ)y.
k—>o0
On the other hand,
(3.17) AyZyyr— Aghy, = [A(Z, Y — )Y — Ap(Z Yy, — hy)'.

Since

(3.18) [ Ay(8)[Z4(8)Yn(s) —hy()V'ds = [ Ay(@)[Z1(8)yu(s) — Iy (s))'ds +
:l‘o N

+ f(‘ik(s)_‘ik(m)) [Z:(8)Yx(s) — hy(8)]'ds,
by (3.17) we have
(3.19) lim(d) 4,7y, = A(Zy).

k->o00

Relations (3.16) and (3.19) complete the proof of the Lemma.

Remark 2. The assumption of the continuity of the elements of Z
in the Lemma is essential. In fact,

(3.20) H(H6) # (HH)S4.
Proof of Theorem 4. Uniqueness assertion results from Theorem 1.

Thus it is enough to prove the existence of a solution of problem (iv).
Let Z = (#;) be the fundamental matrix of system (ii) such that z;;(z,) = 0
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for ¢ #j and z,(x,) =1 for ¢, j =1,2,...,n. We claim that

(3.21) y =2y,
where
(3.22) g =27"f, g@) =9

(Z7! denotes the inverse matrix of Z) is a solution of problem (iv). In
fact, using (3.21), the Lemma and [1], p. 261, we obtain

(3.23) Y =Z'g+29 =(AZ)g+Z(Z7'f) = A(Zg)+f.

Hence Zg satisfies (iv). Moreover, by (3.21) and (3.22), we get y (x,) = ¥°

which implies our assertion.
Example 4. The non-homogeneous equation

(3.24) y = [—26(z)+28(z—1)]y -+ 6(x)

has no solutions in the class V. In fact, if there exists a solution y in V,
then
(3.25) y = ¢, H(x)+cyH(x—1)+ H(x)+c,.

From (3.24) and (3.25) we get
ote=—4%, ¢+o=-—-1

which is of course impossible.

Remark 3. The distributional solutions of systems of ordinary
linear differential equations with smooth coefficients can be found in [5].
In paper [6] some homogeneous systems of equations with distributional
coefficients are considered. But the existence of the product of a measure
and a continuous function does not result from the definition of the product
of two distributions in [6]. Moreover, all theorems of that paper are
published without proofs.
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