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1. Introduction. Although nearly two decades ago Darmois [3] and
Skitovich [24] drew attention to characterizations of the normal law,
it was not until recently through the work of Ghurye and . Olkin [7],
Khatri and Rao [12] and others that many characterizations of normal
and other probability distributions have been rendered tractable and
established on a sound footing. The literature on characterization problems
has now grown substantially. An extensive survey of this field in a recent
book by Kagan et al. [11] lists over 180 references. A number of investi-
gators have recently made significant contributions to this subject and
many of them have directed their efforts towards a unified dimension-
-free approach to characterization problems. The object of this article
is to present a systematic account of this approach. The motivation
for much of our work lies in the pioneering work of Ghurye and Olkin 7],
Khatri and Rao [12] and others. It is hoped that our dimension-free
approach will shed further insight into the true nature of numerous
characterizations of the normal law that have been discovered in recent
years. Since this is a review-research paper, a major part of it is being
written in a simple expository fashion.

We begin with the solution of certain functional equations which
are commonly encountered in characterization problems.

2. Solution of certain functional equations in Hilbert space. Let
H,H,, H,, etc. denote separable Hilbert spaces. Let ¢ be a.given complex-
-valued function on H. If h is an element of H, we define the difference
operator with increment h, A,p: H->C, by the equation

(2.1) (49) (@) = @(x+h) —@().
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In an analogous manner the n-th difference operator Ay, . am 18
defined inductively as follows:

(2.2) (Ah(n)....,h(n)<P)(-’1") = (Ah(n)(Ah(l),....h(n—l)‘l’))(a’)-
In terms of the difference operator 4 we have ([16] and [17])

Definition 2.1. A continuous function P: H—C is a polynomial
of degree less than or equal to n if every (n +1)-st order difference of P
vanishes; if, in addition, for some (1), ..., k(n), the n-th order difference
Apqy,... . wmy P # 0, P is said to be a polynomial of degree n.

By convention, a non-zero constant function is a polynomial of degree
zero while the zero function P = 0 is a polynomial of degree —1.

The following lemmas play a central role in characterization problems:

LEmMMmA 2.1. Suppose that P: H, x H,—~C is continuous and there
exists an integer n such that for each y the function x—P(x,y) 18 a poly-
nomial of degree less than or equal to m. Furthermore, suppose that for each
element v of H, there is an element w(v) such that the function Q(x,y) =
=P(x+w,y+v)—P(xr,y) is a polynomial on H, Xx H, and the degree
of @ is less than or equal to n for all v in H,. Then P is a polynomial on
H, X H, of degree less than or equal to max(m,n-+1).

An elementary proof of this lemma is given in [8]. Actually the
lemma furnishes the best possible degree for P; for an example where
the degree of P is attained, let P(x,y) = P,(%)+ R,,,(y) with P,, and
R, ., being polynomials of degree m and n4-1, respectively.

LEMMA 2.2, Let P: Hi X Hy,—~C and Q: H, X H,—~>C be continuous
and suppose that, for each y, the functions x—P(x,y) and z—Q(x, y) are
polynomzials of degree less than or equal to p and q, respectively. Let E(x, y)
be a polynomial of degree m on H, X H,. Let there be given linear operators
A;: Hi—H and B;: H,—~H with range(4;) c range(B;) and continuous
Sunctions ¢;: H—->C, 1 <j< n, such that, for all (x,y)eH, x H,,

(2.3) D) ¢j(4;2+ B;y) = P(y,2) +@Q(x,y) + E(x, y).

Then P is a polynomial on H, X H, of degree less than or equal to
max(m, n+p +q).

An elementary proof of the lemma is given in [8]. An example in
which the stated degree of P is attained can be easily constructed by
letting n =1, ¢(x) =2, A =B =1 and Q(x,y) = C,(x)D,(y), where C
and D are polynomials of degree p and ¢, respectively.

n COROLLARY 1. Suppose that in (2.3) range(A;) = range(B;). Then
D 9i(A;2+ B;y) is a polynomial on H,x H, of degree less than or equal
1

to max(m,p+q—+mn).
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LEMmA 2.3. Let ¢;: H—>C, j =1, ...,n, be continuous functions and
suppose that there exist linear operators A;: H—H such that the function.

i’(p,-(Ajw) i8 a polynomial of degree less than or equal to m on H. Define
t;w mapping (A;, A;): w;(A,.m, A;x) which maps H into H x H. Suppose r
i8 such that, for each (%, j) satisfying 1 < i < r < j < n, the range of (A,, 0)
is contained in the range of (A;, A;). Then Zr:q),(Ajw) i8 a polynomial of
degree less than or equal to max(m,n—2). 1

Proof. Although this lemma is correctly stated in [8], its proof
contains an error. It is, therefore, worthwhile to furnish a correct proof
of the lemma here. Suppose that

n

D #i(4;2) = P(a),

1

where P(x) is a polynomial of degree less than or equal to m. If r = =,
the result holds trivially. Let r < n. Let z;eker(4;), r <j < n, be the
vectors in H chosen arbitrarily. Then

(2.4) D Ay B9 Ai@) = P2, 2,44, ...y 2,),
1

where P(x, 2.1, ...,2,) is a polynomial of degree less than or equal to
m in (%,2,,,,...,2,). Clearly, (2.4) can be written as

(28) Y (4, A @) (Aiw+ Ai2,0) = Q@)+ P (@, 2041y -, 2),
1

,
where Q(x) = 2Azr+2 oo 4, 9i(4,2).
1

Since range(A4;, 0) = range(4;, 4;), 1 < i< r < j< n, it follows that
{A;x: veH} = {A;2;: zjeker(4;)} for 1<i<r<j<m.

Also, given 2,5y ...y2,, P(®,2,.1y%.2,...,2,) IS a polynomial in
(%, 2,,,) of degree less than or equal to m — (n —7) 4-1. So from Lemma 2.2,
for given (2,,5,...y2,;), @(2) is a polynomial in # of degree less than or
equal to max (m—(n—7)+1,7—1) =k, say. Therefore we can write

,
(2.6) 2 (Az,.,,_z oo Ay 0) (A0) = Pr(®) 2p125 o0y %)
1
‘We now show that (2.6) implies that P.(w,2,.5,2,3,...,2,) for

given (z,,3,...,2,) is a polynomial on H x ker(4,,) of degree less than



122 A. KUMAR AND P. K. PATHAK

or equal to k+1. Let h be an arbitrary element of ker(A4,_,). Then it is
easily seen that

(2.7) Pk(w—hr z,+2+h, Bri3y cey zn)_Pk(w7 Brizy oeey Zy)

=Pk($—h, h,zr+3’ ---7zn)7

where, for given 2, ,,...,2, and h, the right-hand side is a polynomial
in # and 2, , (trivially!) of degree less than or equal to k. So it follows
from Lemma 2.1 that, for given z, ., ..., ?,,

r
(2.8) Pp=D (4, . A 9) (A7)
1

is a polynomial in (z, ,z,+2) of degree less than or equal to
k+1 = max (m—(n—2)+2,r).

Successive iteration of process (2.6) through (2.8) then yields the
desired result.

Khatri and Rao [12] established this lemma for finite-dimensional
vector spaces with the A4; as matrices which satisfy

rank (j;) =rank(4;)+rank(4;), 1<i<r<j<mn.
It is easy to see that this condition on matrices implies that if A, = b
for some 2, then the system of equations

Ay (b
4,0 = \o
admits a solution so that range(4,, 0) c range(4;, 4;) showing that their

condition is the appropriate analogue of the condition on the operators
4; in Lemma 2.3.

COROLLARY 1. Suppose that the operators A; of Lemma 2.3 satisfy
range(4;, 0) « range(A4,, A;) for © #j. Then each ¢;(A;x) is a polyno-
‘mial of degree less tham or equal to max(m,n—2).

COROLLARY 2. Consider the functions and operators of Lemma 2.2 and
suppose that they satisfy (2.3). Moreover, suppose that range(4;) = range(B;),
1< i< n, and there is an r such that, for 1 < i< r <j< n, the range of
(4,04 B;y, 0) is contained in the range of (A,x+ B;y, A;x+ B;y). Then

r

Doi(A;x+ B;y) is a polynomial on H X H of degree less than or equal to
1
max(m, n+p+g).
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COROLLARY 3. Let B;, 1< j< n, be surjective operators and suppose
that (B; — B;) for each i # j is also surjective. Let ¢; be continuous functions,
1 < j < n, which satisfy

(2.9) N pi(@+Biy) = P(2)+Q(y).

Then each @; is a polynomial of degree less than or equal to n.

This corollary is an immediate consequence of the preceding corollary.
The finite-dimensional version of Corollary 3 is due to Ghurye and Ol-
kin [7].

COROLLARY 4. Let ¢;, 1 < j < n, be n given continuous functions in H.
Let A;, B;, C;, 1 <j < n, be linear operators in H. Let P(x, y, 2),Q(x, y, 2),
R(z,y,2) and E(x,y,2) be given functions in H x H x H. Suppose that
P,Q and R for each z are polynomials in H X H of degree p, q and r, res-
pectively. Suppose that E 18 a polynomial of degree less than or equal to m
wn H x H x H. Consider now the functional equation

(2.10) th,-(Aja:-i-Bjy—{-O,z)
1
=P(y,2,2)+Q(2,2,y)+ R(x,y,2)+ E(z,y,?).

Then the following assertions hold:

(a) If range(A;x) < range(B;y+C;z), 1<j<n, then P is a poly-
nomial on the space H X H X H of degree less than or equal to
max{m,n+p+q, n+p-+r}.

(b) If, for each j, 1 <j< m,

range(A4;x) c range(B;y + C;z2),
range(B;y) < range(4;x+C;2) and range(C;2) = range(4;x+ B;y),
then

N 0i(4;0+ By +Cjz)
1

18 a polynomial in the space H x H X H of degree less than or equal to
max{m,n+p-+q, n+p-+r}.

(¢) Suppose that, in addition to the hypotheses of (b), there is an r
such that, for 1 <i<r<j<m,

range{d,z+ B,y +C;z, 0}  range{d,z+ B,y +Clz, A;2+ B;y + C;z}.
Then

Zq’i(Aiw+Biy +C;?)
1
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is a polynomial on the space H X H x H of degree less than or equal ot
max{m,n+p-+¢,n+p-+r}
(d) Suppose that, in addition to the hypotheses of (b), for each i + j,

range{A;x+ B;y + C;z, 0} c range{Ad,x 4+ B,y + C;2, A;x+ B;y + C;2}.

Then each @;(A;x+ B,y + C;2) 18 a polynomial in H x H X H of degree
less than or equal to max{m,n+p-+gq,n+p-+r}.

This corollary has an obvious extension to H, x ... x H, for any
integer k. It is perhaps worthwhile noting that the corollary is the natural
extension of a similar result of Khatri and Rao [12] in finite-dimensional
vector spaces.

Lemma 2.3 and its corollaries furnish best possible results of their
kind under their respective hypotheses; examples to this effect can be
easily constructed. In applications there are, however, cases in which
one has much more information about the underlying functions and
operators than the preceding lemmas and corollaries make use of. The
added information can of course be used to improve the degrees of poly-
nomials in preceding results. The most effective technique for doing so
is to carry out an iterative procedure of differencing with a minimum
number of steps which eliminates from the functional equation all the
unnecessary functions ¢; with the exception of those whose degrees are
desired. For illustration consider the following example:

Example. Let ¢;, 1 <j < 6, be six continuous functions and sup-
pose that they satisfy the equation

(2.11)  9:1(2) +@2(y) +93(2) + @ (@ +¥) +9s(2+2) +@5(y +2) = 0.

An application of Corollary 1 to Lemma 2.3 shows that each ¢, is
a polynomial of degree less than or equal to 4. Now to obtain a more
precise estimate of ¢,, say, replace z by x+h, y by y—h and 2 by 2—h
in (2.11) and obtain the following equation:

(2.12) P1(2+h) + @2 (Y —h) +3(2 —h) + s (®+¥) +os(2+2) +
+s(y+2—2h) = 0.

On subtracting (2.12) from (2.11) we find that 4,¢,(z) is free of =
so that ¢, is a linear function.

In an analogous manner, an equation similar to (2.11) in p variables
&1y ...y &y and p(p +1)/2 unknown functions g¢,, ..., Pyp11ye can be shown
to imply that each of the ¢; must be linear. This last observation has
been used by Rao ([11] and [23]) to show that the joint probability distri-
bution of p suitably chosen linear functions of p(p-+1)/2 independent
random variables determines the probability distribution of each variable
up to a change of location.
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The “technique of elimination of functions”, as illustrated above,
has been used in the literature in many different ways to solve functional
equations commonly encountered in applications. It would be impossible
to even attempt to present all such applications here. Nonetheless we
furnish below two lemmas which it is hoped would demonstrate the
strength of this technique.

LEMMA 2.4. Let ¢;: H—C, j =1, ...,r+28, be continuous functions
and suppose that there exist linear operators A;: H—H such that the function
r+28
D 9;(A;x) is a polynomial of degree less than or equal to m. Define the

1
mapping (A;, A;, Ay): x—(A;z, A;z, Ayx) which maps H into H X H X H.
Suppose that range(A4;,0,0) < range(4;, 4;, 4;,,) for 1<i<r and

r+1<j<r+s. Then Do;(A;x) is a polynomial of degree less than or
1

equal to max(m,r+s—2).
Proof. Let z; = ker(4;)nker(4;,,), r+1 < j < r+s, be vectors in H
chosen arbitrarily. Then, by the hypotheses of the lemma, it follows that

r

{2.13) DAy, o Ae, 9i(Ai8) = P(B, 2115 -y 2r4),
1

where P is a polynomial in (z,2,,.,,...,%,,,) OD

H x [ker(4,,,)nker(4,,,)]X ... x[ker(4,, ,)Nnker(A4,, )]
of degree less than or equal to m. An approach similar to that of Lemma; 2.3

shows that ) ¢;(4;x) is a polynomial of degree less than or equal to
1

max(m, r+s—2).
LevMma 2.5. Let ¢;: H—~C, j =1,...,n, be continuous functions and
suppose that the functions satisfy the equation

D oi(4;2) =0,
1

where the A; are linear operators. Further suppose that thereis anr, 2 < r < n,
such that

range(4,,0, ...,0) c range(4,, 45, ..., 4,)
and
‘AI’A;‘+1 = e — AIA;L = O’

where A’ denotes the adjoint of A. Then ¢,(A,x) is linear.
Proof. Let K = ker(4,)n ... nker(4,). The equation

D 9i(42) =0
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then yields

n
(2.14) A,¢:1(4,0) = — D) A,¢;(4;m)  for each zeK.

r+1

Now let P denote the orthogonal projection on [ker(4,)]*. Then
ker (P) = ker(4,) and A, P = A,. It also follows from the hypothesis of
the lemma that 4;P =0 for j =r+1,...,n. We thus have from (2.14)

(215)  Augi(412) = A,g:(4,P0) = — 3 A,9(4,Pr) = — ) 4,0,(0)

r+1 r+1
for each zeK,

so that 4,¢,(A4,z) is constant in . Since {4,x: vxeH} = {A,2: 2¢K} in
our case, it follows that ¢,(4,x) is linear in .

Before concluding this section a few remarks are perhaps in order,
First, it can be easily seen that Lemmas 2.4 and 2.5 have a number of
corollaries which are analogous in nature and proof to those of Lemma 2.3.
For reasons of brevity, we leave their verification to the reader. The
second remark is concerning the extension of these results to other linear
spaces, e.g. Banach space, locally compact groups and so forth. The
results presented in this section carry over word for word to these spaces
except Lemma 2.5, a suitable extension of which is also possible. Finally,
in many applications one finds that functional equations considered in
preceding lemmas are only satisfied in a neighborhood of the origin and
in such cases our results remain valid but only in a certain neighborhood
of the origin.

We turn now to certain characterizations of the normal law.

3. Characterizations of the mormal law. In what follows we first
furnish a few well-known results concerning characterizations of the
normal law on the line. Not only do these results motivate characteri-
zations of the normal law in linear spaces but are also useful in establishing
many such multivariate generalizations.

Definition 3.1. A real-valued function U(s,?) of the complex-
-variable 2 = s+t is called harmonic if U, and U, are continuous and
U,+ Uy =0. .

LEMMA 3.1. A real-valued function U(s,t) is harmonic iff U is the
real part of an analytic function. '

LEMMA 3.2. Let f(2) be a non-vanishing analytic function. Then log|f(2)|
18 harmonic.

LEMMA 3.3. Let U(z) be a harmonic function and suppose that U (z)
= O(|2|2). Then U(z) 18 a polynomial in z of degree less than or equal 2.
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These lemmas are standard results in harmonic functions and can
be looked up, for example, in Ahlfors [1].

LEMMA 3.4. Let X and Y be two independent random variables and
suppose that the moment generating function Mg(t) of § = X4+ Y exists
for [t| <T. Then the moment generating function Mx(t) of X exists for
[t| < T and satisfies, for some k> 0 and a > 0,

1
— e M < Mx(t) < ke™ Mg(t)

(3.1) -

(cf. Ramachandran [21] for a proof).

LemMA 3.5. Let ¢ be a non-vanishing characteristic function (c.f.) on
the real line. Then there exists a unique continuous function A with A(0) = ¢
such that ¢(t) = exp[A(t)] for each t.

See Chung [2] for a proof. An analogous method of proof yields the
following extension in a Hilbert space [9]:

LEMMA 3.6. Let f be a complex-valued mon-vanishing uniformly -con-
tinuous function defined on a real Hilbert space H so that f(0) = 1. Then
there is a unique continuous function A on H such that A(0) = 0 and f(y)
= exp[A(y)], y<H.

LemMA 3.7 (Cramér). Let X and Y be two independent real-valued
random variables and suppose that U = X + Y has the normal distribution.
Then X has the normal distribution.

Proof. Since U = X+ Y has the normal distribution, its moment
generating function admits the form M (s) = exp[as —bs?], where b > 0.
By Lemma 3.4 the moment generating function of X satisfies the ine-
quality

(3.2) Mx(s) < If;exp [a|s| — bs?],
and a similar result holds for My (s). For z = 8+ it, define Mx(z) = E[¢"X],

and My (2) and M (2) similarly. Then, by Lemma 3.4,

| Mx ()| < Mx(s) < kexp[a|s| —bs?]
and, similarly,
| My (2)| < kexp[a|s| —bs?].

Since Mx(2) = My(2)/My(2), it follows that
1 ' »
(3.3) m exp[ —als|]] < |Mx(2)| < kexp[a|s| —bs?], where s = Re(z).
Since the moment generating function of X exists, it follows that

M (2) is analytic; it is also non-vanishing. Thus log|M x(z)| is harmonic
and, by virtue of (3.3), log| M x(2)| = O(|2|?). So log| M x(2)| = P(z), where
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P (2) is a quadratic polynomial in z. Hence the moment generating function
Mx(s) = exp[P(s)]. So X is normal.

The reader may perhaps wonder the need for this proof of such an
ancient theorem in the theory of characterizations. The main object of
our new proof is to demonstrate the use of harmonic functions in charac-
terization problems. We hope that our proof might motivate applications
of harmonic functions to other characterization problems.

The theorem of Cramér (Lemma 3.7) on decomposition of the normal
distribution has been extended in several directions, e.g. decompositions
theorems are available for the binomial, the Poisson and normal distri-
butions and so forth (cf. Ramachandran [21]). Similar decomposition
results are not fully known for stable distributions, although it is known
that if the sum of two independent random variables has a stable distri-
bution, then each variable is not necessarily stable. A partial result in
this direction is the following

THEOREM 3.1. Let X,, X,, X, be independent random wvariables and
suppose that sX,+ (s+1) X, +tX; for each (8,t) has a stable distribution
with exponent a. Then each X; (1 = 1,2, 3) i8 stable with the same expo-
nent a.

Proof. We refer the reader to [11] for the definition of stable distri-
bution with exponent a. Let

@:(+) = logfi(-)—logg,(-),

where logf;(-) and logg;(-) denote two alternative log characteristic
functions of X; (¢ =1, 2, 3). (Since sX, 4 (s+1t)X,+¢X, has a non-van-
ishing c.f., each X; has a non-vanishing c.f., so that logf; and logg, are
unambiguously defined.) A little consideration now shows that

(3.4) P2(8+1) = —[p1(t) +@2(8)].

By Lemma 2.2 it follows that each ¢; is linear. Consequently, the
distribution of each random variable is determined up to a change of
location. Since the sum s X, + (s +1) X, + t X, is always stable with exponent
a when the X, are stable with exponent a, it follows that the X, must
have stable distribution with exponent a.

~ In a similar fashion we can establish the following extension. Let
Xy .-ry Xpyns12 be independent random variables and suppose that,
for each (t,,...,1,), the distribution of

t1X1+t2X2 +"' +tan + (t1+t2)Xn+l +" . +(tn—1 + tn)Xn:n-H)m

is stable with exponent a. Then each X; has a stable distribution with
the same exponent.
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LemMA 3.8 (Marcinkiewicz). Suppose that the c.f. ¢ of a real-valued
random variable X admits the form ¢(t) = exp[P(t)], where P(t) is a poly-
nomial in t in a neighborhood of t = 0. Then X is normally distributed
(cf. [21] and Lemma 2.4.3 in [11] for a proof).

A simple extension of Lemma 3.8 is the following corollary:

COROLLARY 1. Let X be a random variable and suppose that the function
¢(2) = E[exp(zX)] exists for all 2 = s+it and is analytic and non-van-
ishing. Also suppose that log|p(2)| has polynomial growth in z. Then X is
normally distributed.

With these preliminaries we turn now to dimension-free characteri-
zations of the normal law. In order to furnish a unified approach to char-
acterization problems we assume that, unless stated to the contrary,
the random variables under study take values in a given real separable
Hilbert space H. We keep in the back of our minds a system of coordi-
nates in H, i.e. a -complete orthonormal sequence {e,: n > 1} of vectors
in H. For each x¢H, we denote by x, the n-th coordinate of «z, i.e.
z, = (x, e,). In our set up we identify a real-valued random variable X
with Xe, in H; similarly, a set of finitely many random variables (X,, ...
..., X;) will be identified with the random variable Y,e,+...+ Y,¢, in
H and so forth. Finally, an H-valued random variable X is said to have
the normal distribution if, for each ye H, the real-valued random variable
(v, X) has the normal distribution on the line. \We now begin our charac-
terizations with certain extensions of the Darmois-Skitovich theorem

THEOREM 3.2. Let X,,..., X, be independent random wvariables. Let
Ay, 1< j < n, be bounded linear operators in H. Suppose that the m random
variables

m
"

Y. — V4. x.

i ij<Ljo
j=

1<i<m,

[

are mutually independent and, for each j, 1 <j < n,
{Alth: tIGH} c {A2]'t2+"'+Amjt1n: tiGH, ¢ = 2, ceey "n}.

Then Y, has a mormal distribution.

Proof. Let ¢;(t) = Elexp[i(t, X;)]] denote the c.f. of X;. Since
¢; does not vanish in a neighborhood of ¢ = 0, we can take its logarithm
w; in a certain neighborhood of ¢ = 0. Now the mutual independence
of the Y, 1 <4< m, yields in a neighborhood of (¢,,...,%,) = 0 the
equation

(3.5) D wi Ayttt Aytn) = Ca(ty) +onn + Cru(t)
j=1

9 — Colloquium Mathematicum XXXV.1
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where C;(f) denotes the logarithm of the c.f. (lef.) of ¥, 1 <i<<m.
By assumption

range(4,;!,) < range(d4,;ty+... + A y;ty).

Therefore, by Corollary 4 to Lemma 2.3, it follows that C, (¢,) is a poly-
nomial in a neighborhood of ¢, = 0. For fixed v¢H, a direct calculation
shows that the c.f. of (z, ¥,) at ¢, —o0 < t < o0, is given by exp[C(ix)]
for small |t|. By Marcinkiewicz’s theorem we then see that, for each z,
the real random variable (z, Y,) is normal. So Y, is normal.

COROLLARY 1. Suppose that, for each i, 1< i< m,
range(A;t;) < range(A,;t,+ Agta ...+ At —Aut), 1<j<n.

Then each Y, is normally distributed.

Theorem 3.2 and this Corollary 1 are dimension-free extensions of
similar results due to Ghurye and Olkin [7], Khatri and Rao [12] and
others. Results of this kind have been used in the literature to establish
normality of the basic variables X;, 1 <j < m, via Cramér’s theorem.
For example, if Y, is normal, Cramér’s theorem implies that then so is
A, X,. In that case (A,,f, X,) is normal for each ¢, and if 4,, happens
to be surjective, then X, has a normal distribution. (Actually, to assert
normality of X, it suffices if the range of A4,, contains the range of X,).
Consider the other extreme case in which the operators satisfy the hypo-
theses of Corollary 1. Then all the Y;, 1 < i< m, are normal. The inde-
pendence of Y; implies that, for each ¢,, ..., t,, the real random variable
(8, ¥ )+...+ (%, Y,,) has a normal distribution. By Cramér’s theorem
it then follows that (4,,t,+... +4,,t,, X,) is normal for each ¢, ...,1,.
So if A4, +...+ A1, is surjective, then X, has a normal distribution.
When applied to finite-dimensional random variables Theorem 3.2 yields
the following result due to Khatri and Rao [12]:

COROLLARY 2. Let X; be a p;-vector variable, 1 < j < n, and the ope-
rator Ay a (¢; X p;)-matriz. Let A; = (A, ..., Ay;), and let A;(k) be the
matriz obtained by deleting the k-th partition from A;. Suppose that
ra,nk(Aj(k)) = p; for all k and j. Then X; has a p;-variate normal distri-
bution.

For a proof, note that under the hypotheses of the corollary, for
each 1,

range(A4;t;) < range(4,;t,+...+4,,;t,—A;t) for all ¢ and j.

Also, for each Jy Ayty+...+4,,;t, is surjective. Conclusions of Corol-
lary 2 are now easily seen to be consequences of Corollary 1.

In Chapter 14 of their book, Kagan et al. (cf. [11], p. 460) mention
as unsolved problems extensions of Corollary 2 to Hilbert space-valued
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and more general random variables and also to a denumerable number
of vectors. We consider our Theorem 3.2 and Corollary 1 as the appropriate
extension of their result. We mention without going into details that
Theorem 3.2 is valid, for example, in any Banach space and also has an
appropriate extension to a denumerable number of random variables. '
"We conclude this section on a slightly different note by partially
solving a conjecture communicated to us by Professor H. Kesten.

ConNJECTURE. Let X, Y, and Z be random variables such that X
is independent of the pair (Y, Z). Suppose that (X + ¥Y) is independent
of (X+Z). Then X is normally distributed.

Let y,(t) denote the l.c.f. of X and y,(¢,,t;) the l.c.f. of (Y, Z) in
a neighborhood of the origin. Independence of (X 4+ Y) and (X 4Z) now
implies that

Pt +12) —pa(t) — i () = p(ty, 0) +9(0, 1) —pa(ty, to)
in a neighborhood of t, =0, ¢, = 0.

To assert normality of X, we must show that the above equation
implies that y, is a polynomial. At the present time we cannot achieve
this without added restrictions on w,(t,, t,). For example, normality of
X, is obvious if y(?¢,,t,) can be expressed as the sum of functions each
of which depends on (¢,,t,) only through a linear function in ¢, and ¢,.
We transmit the conjecture here with the hope that interested readers
may be able to prove it without any additional restrictions.

4. Characterization of vectors with linear structure. We now turn to
a dimension-free discussion of Rao’s results [22] on random vectors with
linear structure. We first present a few preliminary results and defini-
tions in this connection.

Definition 4.1. A Hilbert space-valued random variable X is said
to admit a linear structure if there exist non-degenerate independent
real-valued random variables U,, ..., U, and scalars By, f1,..., 8 iIn H
such that

(4.1) X = o+ Uspit...+ Ui,
where it is assumed, without loss of generality, that no two g;’s are mul-
tiples of each other.

Any two representations of X, say,(4.1)and X = y,+ V1 +...+ Vi,
are equivalent if each f; is a multiple of y;, and each y; is a multiple
of some g;. Finally, the random variable X is said to have a unique
structure if all linear structures of X are equivalent.

An immediate consequence of Definition 4.1 is that if X admits two
representations, say

(4.2) X =8+ Ui+ .+ Ui = ot Varat...+ Vi
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then {Biy...; B> = {(¥1y.--y ¥, Where {(B,,...,8,> denotes the sub-
space spanned by the f;. This result also implies that

(Bo—vo)elBry -3 B> = Y1y -evs Y1y

so that g, and y, can be eliminated from (4.2) by suitable subtraction.

The above definitions and results are due to Rao [22] except that
they have now been paraphrased in Hilbert space terminology.

The following lemma plays a central role in the study of random
variables with linear structure:

LEMMA 4.1. Consider a random variable X with the following two linear
structures:

(4.3) _X = Ulﬂl +...+ Ukﬂk = V171+°--+V171-

Suppose that no y; is proportional to f,. Then U, has a normal distri-
bution on the line.

Proof. Let ¢;, 1<t <k, and y;, 1 <j<, denote the l.c.f. of U,
and of V;, respectively, in a neighborhood of the origin. Then considering
the logarithm of characteristic functional of X yields the functional
equation

(4.4) @i ((Biy )+ + 0 ((Brr ) — vu((¥1) O) —- .. —wi((7, ) =0

in a neighborhood of ¢ = 0. It is clear from the hypotheses of the lemma
that the range of ((8y,'),0): ¢t ((:,1), 0) is contained in the range of
(Bry Bi): t— ((ﬂl’ ), (Bis t))) and in the range of (f,, y;): t > ((ﬂl; t)y (¥4 t))
So, by Lemma 2.3, q)((ﬂl, t)) is a polynomial in a neighborhood
of { = 0. An application of Lemma 3.8 now shows that U, has a normal
distribution on the line.

COROLLARY 1. Suppose that no f;, 1 < i< k, is proportional to any
vi» 1<j<l. Then X has a normal distribution.

COROLLARY 2. Suppose that f, is proportional to y,. Then the l.c.f.
of U, and of V, differ by a polynomial of degree less than or equal to k +1—3
tn a neighborhood of the origin. (Clear by Lenllma 2.3.)

An immediate consequence of the above results is that if X admits
two representations given by (4.3), then the following dichotomny holds
for each 7, 1 <7< m. Either 8; is not proportional to any y; (in that
case U; has a normal distribution on the line) or 8; is proportional to
some y; (in that case the l.c.f. of U; and of V; differ by a polynomial in
a neighborhood of ¢ = 0).

COROLLARY 3. Let r, 1 < r < k, be such that U,, ..., U, are non-normal
variables while U, ,, ..., U, are normal. Then every structure of X admits
the representation

(4.5) X = Vit VeboH Ve vesa e+ Vi
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where the V,;, 1 <1 <r, are non-normal variables and the remaining V;,
r+1<j <1, are normal variables.
Furthermore, in a neighborhood of t = 0 the equation

(4.6) D fil(Bir 1) = Pt

holds, where f; = ¢; —y;, 1 <t <<k, and P,(1) i8 a polynomial of degree 2.

Equation (4.6) can be used to derive results on uniqueness of structural
decompositions. For example, suppose that r = k = 4, and c.f. of U, are
non-vanishing and have no normal components. Then an application of
Lemma 2.3 shows that each f; is quadratic in ¢ which, in turn, implies
that X must have a unique structure of the kind X = U,8,+...+ U,B,.

The following is perhaps a more interesting result in this direction.

THEOREM 4.1. Suppose that the random variable X admits the repre-
sentation

(4.7) X = UI.B1+'°'+Ukﬂk

in which the U; are non-normal variables having no normal components.
Assume that the range of ((B1,1),0,..., 0) is contained in the range of
((B1s 1)y (B2s )y -oes (Brs t)). Then every structure of X admits the represen-
tation

(4.8) X =UBri+ Voot +ViBi+ Vi Vea+--- + Vi

where Vi1, ..., V; are normal variables.

Proof. It follows from Corollary 3 to Lemma 4.1 that every repre-
sentation of X is of the form

(4.9) X =Vt oo+ ViBe+ Vi1 Vega +-- - + Vi

where V,, ..., ¥V, are non-normal and V,,,, ..., V; are normal variables.
Choose a t such that (8,,?) =¢ # 0 and (B,,t) =... = (fi,t) = 0.
Then from (4.7) and (4.9) we have

(4.10) Uy =eVi+ Vi1 (Yesry )+ ..+ Vilyy 1)

Since U, has no normal component, (yx,1,%t) = ... = (y;,1) = 0. So
Uu,=1YV,.

COROLLARY 1. Suppose that, for each 1, the range of (0, ceey (Biyt)y ovey 0)
is contained in the range of ((B1yt)y ..., (Bist)y ey (Best)). Then X has
a unique Structure.

It is worth-while noting here that the assertion of Corollary 1 also
goes through when exactly one of the structural variables in (4.7) has
a normal component.
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COROLLARY 2. Suppose that it is known that the U; in (4.7) are non-
-normal but may have normal components. Then, under the hypotheses of
Corollary 1, X has a umique structure among all structural decompositions
with as many as k variables.

Theorem 4.1 and its corollaries are extensions of similar results due
to Rao (cf. [11], Theorem 10.3.6, p. 312). We refer the reader to Kagan et
al. ([11], p. 313-317) for other results of this kind which can be easily
extended to Hilbert space-valued random variables.

Motivated by Rao’s definition of linear structure, we furnish the
following definition of a general linear structure:

Definition 4.2. A Hilbert space-valued random variable X is said
to have a general linear structure if there exist non-degenerate independent
Hilbert space-valued random variables Y,,..., Y, and bounded linear
operators 4,,..., 4, such that
(4.11) X =pu4+A4,Y,+...4+4,Y,,
where u is a scalar in H and, for each ¢ # j, range(4,, 0) = range(4,, 4;).

Suppose that X has an alternative expression
(4.12) . X =v+BZ,+...+ B/Z,.

Then, choosing a te(\ker(4;) yields (u—»,t) = (Byt, Z;)+...+
+(B;t, Z,) showing i |

(ker(4;) = () ker(B;)
i i

for any two representations of X.
Further, if w is an element of the sample space over which the Y
and the Z are defined, then

(4.13) p+4,Y,(0)+...4+ 4, Y (0) =v+B,Z,(0)+...+ B, Z;(w).

This equation shows that we can (and do) eliminate 4 and » in the
representation of X by suitable subtraction.

Based on the above terminology we have the following characteri-
zation of normality:

THEOREM 4.2. Suppose that a random variable X admits the general
linear structures

(4.14) X =A4,Y,+...+4, Y, = BiZ,+...+B,Z,
and also suppose that range(4,, 0) c range(4,, B;), 1 <j<l. Then the
random variable A, Y, has a mormal distribution.

Proof. Let ¢; and y; denote the l.c.f. of Y; and of Z;, respectively,
in a neighborhood of the origin. Then, by considering the c.f. of X, we
see that ¢, and y; satisfy the following functional equation in a neigh-
borhood of the origin:

Pr(Agt) 4.0+ @ (Art) — 9y (Byt) — ... —y(Bjt) = 0.
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An application of Lemma 2.3 now shows that ¢,(A4,?) is a polynomial
of degree less than or equal to ¥+1!—2 in a neighborhood of ¢ = 0. By
a suitable application of Marcinkiewicz’s theorem we see that, for each ¢,
(Ast, ¥;)= (¢, A;Y,) is a normal variable on the line, so 4;Y, has
a normal distribution.

COROLLARY 1. Suppose that, for each i, range(A4;, 0) = range(A;, B;),
1<j<l. Then X has & normal distribution.

COROLLARY 2. Let the operators A;, 1<i<k, and B;, 1<j<k,
satisfy the following conditions: range(4;, 0) c range(4;, A,), ¢ #*j, and
range(A;, 0) « range(A;, B;). Let Y, ..., Y; be mutually independent and
suppose that A\Y,+...+A,Y, and B Y,+ ...+ B, Y, are identically
distributed. Then each A;Y; (so also each B;Y,) has a normal distri-
bution.

Theorem 4.2 and its corollaries can be regarded as suitable generali-
zations of Lemma 4.1 and its corollaries. Further analogous results con-
cerning general linear structures are under investigation and would be
published elsewhere.

5. Characterization of probability laws through distributions of linear
functions. In [11] and [23] Rao proved the remarkable result that the
probability distribution of p(p +1)/2 independent real-valued random
variables can be determined, except for a change of location, by the
joint probability distribution of p suitable linear functions of the variables.
In this section we furnish dimension-free extensions of this result. To
illustrate the techniques to be used in this section we consider the fol-
lowing result first: '

THEOREM 5.1. Let X;, 1 <1< 10, be independent Hilbert space-valued
random variables with non-vanishing characteristic functionals. Then the
joint probability distribution of the four random variables

Y, =X1+X5+X6+X7,
Y, =X1+X5+X8+X97
Ya =X1 +X6+X8+X107
Y_4 =X1+X7+X9+X10

(6.1)

determines the probability distribution of each variable up to a change of
location.
. Proof. Let ¢; and f; denote two possible c.f.’s of X,, 1< i< 10.

Let y;(t) = loge,(t) —logf;(A). It can then be seen that the y;’s satisfy
the equation

10
(5.2) Dlpi(4t) =0,
1
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where & = (;,1;,%,,1,)eH* and the A; are the following row vectors
in H*:

Al = (17 07 07 0)7 Az = (071707 0)7 Aa = (07 07 17 0)’ A4 = (07 O; 071)7
As = (17 17 07 O)’ -A6 = (1’ 07 17 0)7 A7 = (17 07 07 1)) -AB = (07 17 17 0)7
Ao = (07 17 O’ 1)7 Alo = (07 07 1’ 1)-

In order to determine u,, say, we note that A, 4, = A, A; = A, A,
A, A; = A, Ay = A, A, = 0andrange(4,,0,0,0) c range(4,, 4,5, A, A,).
Consequently, by Lemma 2.5, ¢, is linear, and so the distribution of X,
is determined up to a change of location. In a similar manner we show
that y,, w;, and y, are all linear. Therefore, (5.2) determines the prob-
ability distribution of X;, 1 <4< 4, up to a change of location. It
thus remains to find the distribution of X;, 5 <7< 10. To do so, we
can (and do) rewrite (5.2) as

(5.3) D wi(At) = Py(b),

where P, () is linear in . Now to find the distribution of X, for example,
note that A;4;, = 0, and range(4s, 0, ..., 0) c range(4s, A¢, 4,, 4y, A,).
So, by Lemma 2.5, y; is linear. In an analogous manner we show that
the y;, 5 < 7 <10, are all linear. Hence (5.2) determines the distributions
of all the X; up to a change of location.

Theorem 5.1, when extended in an obvious manner, shows that the
probability distribution of each of p(p+1)/2 random variables can be
determined up to a change of location from the joint distribution of p
suitable linear functions of the variables. A careful review of numerous
characterizations of this kind in the literature shows that Lemma 2.5
plays, as it has in our proof, a central role in establishing such results
in the following way: one first reduces the characterization problem to
that of solving a functional equation of the kind )'y;(4;t) = 0 in which
the yp; are polynomials of unknown degree; the best possible degree for
y; is then determined by techniques analogous to that of Lemma 2.5.

We present a few additional examples to illustrate these techniques.

THEOREM 5.2. Let X,, X,, X; be three independent random variables
in R™ with non-vanishing c.f.’s. Let A,, A,, A; be three given malrices
of order m x2m each of rank m and let rank(A; : A,) = rank(4, : 4;)
= rank (A4, : 4,) = 2m. Then the probability distribution of A,X,+
+ A, X,+ A, X, determines the probability distribution of each X; up to
a change of location.
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Proof. Let ¢; and f; denote two alternative c.f.’s for X;, ¢« =1, 2, 3.
Let y; = loggp; —logf;. It is easily seen that the y; satisfy the equation

(5.4) P1(418) +pa (4 8) + 93 (4,8) =0,

where £ iz a 2m-vector. By the hypotheses of the theorem, it follows that
range(A;, 0) — range(A4,;, A;) for each ¢ #j. So, by Lemma 2.3, each
v;(A;-) is linear. Since the A; are surjective, each y,;(:) is linear. This
implies that the c.f. of each X, is determined up to a change of location.

The following theorem furnishes a similar result for five random
variables:

THEOREM 5.3. Let X;, 1<t<5, be random variables in R™ with
non-vamishing c.f.’s. Let A;, 1 <1< 5, be five (m X 3m)-matrices each of
rank m. Suppose that, for each i, there is a permutation (i, iy, i3, 1y, is)
of (1,2,3,4,5) such that

rank (A;: 4;, : Ay) =rank(4;: 4; : 4;) = 3m.

Then the probability distribution of A, X,+...+ A; X, determines the
probability distribution of each X; up to a change of location.

Proof. Let y, = loggy;—logf;, 1 <4< 5, where ¢; and f; are two
alternative expressions for the c.f. of X,. It can now be seen that the y;
satisfy

(5.5) 2 pi(4;t) =0,

where ¢ denotes a 3m-vector. An application of Lemma 2.4 now shows
that each y; is linear which implies the assertion of the theorem.

Theorem 5.1 and Lemma 2.5 motivate the following extension and
strengthening of the preceding results:

THEOREM 5.4. Let X;, 1<t << n, be n random variables in a given
Hilbert space H with non-vanishing c.f.’s. Let A; be n bounded surjective
linear operators. Suppose that the A; satisfy the following conditions:

For each i, 1 <t << m, and m < n—3, there are a k(i) > i and a per-
mutation (i4+1(i),...,n(3)) of (i+1,...,n) such that A;Aj, =0 for
j=1+1,...,k and

range(A4;, 0, ..., 0) = range(A;, Ax i), -y Apgy)-

n
Then the probability distribution of Y A;X; determines the distribution
1

of each X;, 1L < i< m, up to a change of location; and in that case for all
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teH we have
n

(5.6) D450 = Py(1),

m+1

where Py(t) i8 linear in i, and y;(t) = loge,;(t) —logf;(t), ¢; and f; being
two alternative c.f.’s of X;. '

Proof. It is easily seen that if the probability distribution of >'4;X;
is given, then the y; must satisfy the equation

(5.7) D wi(4;1) = 0.

Under the hypotheses of the theorem, an application of Lemma 2.5
n

shows that ,(¢) is linear in ¢. This means that the distribution of Y 4;X;
1

determines the distribution of X, up to a change of location. Also, since
¥;(t) is linear, we can (and do) rewrite (5.7) as

(5.8) D vi(451) = Py(b),

where P,(t) is linear in #.
Successive iterations of the above process when applied to (5.8)
yield the desired result.

COROLLARY 1. Let, in Theorem 5.4, m =n—3 and range(A4;,0)
) n

< range(4d,;, 4,) forj # k = n—2,n—1, n. Then the distribution of ) A; X
1

determines the distribution of all the X, up to a change of location.
(Clear from (5.8) and Lemma 2.3.)

It is worth mentioning at this point that Theorem 5.4 is the outcome
of our attempts to strengthen Rao’s remarkable result that the joint
distribution of as few as p linear functions of p(p+1)/2 independent
real-valued random variables can determine the distribution of each
random variable up to a change of location. Rao’s result can be obtained
as a special case of ours by letting in Theorem 5.4 » = p(p +1)/2 and
choosing the A4; to be suitable (1 x p)-matrices as done in Theorem 5.1,
for example, in the special case of n = 10. It is also worth noting perhaps
that many other recent characterization results in vector spaces, analogous
to that of Rao (see [6], [12], [14], [15], [19] and [20]), can be easily seen
to follow from our theorem. For reasons of brevity, we leave the veri-
fication of this last assertion to the reader.
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In conclusion we would like to add that results of this paper are
by no means complete and do not provide solutions to all the characteri-
zation problems that one might encounter. All that we have done here
is to furnish general techniques with which these problems can be handled
and have barely touched on their applications. We intend to publish
a fuller account of our characterization techniques and their applica-
tions in a subsequent paper.
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