ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XVIII, 1 (1983), p. 91-95

A. ADRABINSKI and M. M. SYSEOQ (Wroclaw)

COMPUTATIONAL EXPERIMENTS WITH SOME APPROXIMATION
ALGORITHMS FOR THE TRAVELLING SALESMAN PROBLEM

. 1. Introduction. In this paper we present some results of computa-
tional €Xperiments with several heuristic algorithms for solving the trav-
elling salesman problem. The computations were carried out for the
Lin—Kernigha,n algorithm with the starting solutions obtained by different
very fast approximation algorithms. For a great number of the litera-
ture €Xamples (up to » = 57) the optimum solutions have been obtained.
It was found that the farthest insertion method is superior to the other
fast approximation methods and produces also comparatively best starting
Solutiong fop the Lin-Kernighan algorithm.

2. Preliminaries. The travelling salesman problem (TSP) can be for-
Mulated in geveral ways and er e we make use of the following one.

) We are given a complete graph G = (V, E) on n vertices and an n X n
distance matrix D = (d;) that defines the distance function d: V xV—
>R, U{0}. We call d (¢, j) the length of the arc (i, §j) and assume d(i, ) = 0
for all 4. For a subset § < E, the length of 8 is defined as follows:

a®) = D d(i,j).

@9)e8

A travelling salesman tour or, simply, a tour is defined to be a closed
Simple path that passes through every vertex of G exactly once. The
travelling salesman problem is to find a minimum length tour in G.

There are several special cases of the TSP which depend on some
Properties of the distance function. For example, if d(i,j) = d(j,¢) for
all ¢ ang Jj, then we have a symmetric TSP. In this case, an arc (i, )
18 called an edge and denoted by {i,j}. If (s, j) <d(,k)+d(k,j) for
all 4, §, and k, then the function d satisfies the triangle inequality. If d de-
fines the distance norm between the vertices of G, then we have a
Buclidean or geometric case of the TSP.

It is well known that, except for some very special cases, the TSP
s NP-complete, and hence unlikely to be solvable in polynomial time.
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This motivates the interest in the study of polynomial approximation
algorithms.

We present some computational results obtained for the ALGOL-60
implementations of several algorithms which find the approximate solution
to the symmetric TSP. The computations were carried out for the Lin-
Kernighan algorithm with the starting solutions obtained by different
very fast approximation algorithms. For details of the algorithms and
their ALGOL-60 implementations the reader is referred to [2], [4], [6], [8]-

We have investigated the following algorithms:

A. the tree alteration algorithm, procedure FRTSP (in [2]),

B. the necarest neighbour algorithm, procedure NNTSP,

C. the nearest insertion algorithm, procedure NITSP,

D. the farthest insertion algorithm, procedure FITSP,

E. the nearest addition algorithm, procedure NATSP,

F. the Lin-Kernighan algorithm, procedure LKTSP.

The procedures A-E have running times bounded by O(n?), and
procedure LKTSP by O (n3).

The following theorem contains the theoretical characterization of how
the solutions obtained by the above methods compare with the opti-
mum ones. Let T, and T, denote an approximate tour and the op-
timal tour, respectively.

THEOREM ([4], [8]). If a symmetric distance function d satisfies the
triangle inequality, then

d(Tapp) < 2d(Topt)
Jor T,,, obtained by algorithms A, C, D, E, and
d(Ta.pp) < (%[108'2”"]“‘ %)d(Topt)
for T,,, obtained by algorithm B.

If the distance function is unconstrained by the triangle inequality,
then for any constant % > 1 the problem of finding an approximate tour
T such that d(T)< kd(T,y;) is NP-complete (see [9]).

The approximate solution obtained by the methods A-E can be

used as initial solutions for the method F which in general produces also
only an approximate solution.

3. Computational experiments. The algorithms mentioned in Section 2
have been tested on the Odra-1305 computer for several examples
taken from the literature. The results of the computations are contained
in Tables 1 and 2. For each example, each of the algorithms A-E ha$
been run with the starting point varying from 1 to n. The columns of
Table 1, which correspond to the algorithms, contain the best and the
average lengths of the solutions obtained. Then the best solutions have
been used as initial ones in procedure LKTSP.
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The best results have been obtained by LKTSP with the initial
solutions produced by FITSP. In this case, for the best solution obtained
by FITSP (which was also the optimum solution in 5 cases) procedure
LEKTSP has produced the ¢cptimum solutions for » < 33. For other exam-
ples with n < 57, LKTSP with the best FITSP solutions has produced
solutions 1°/, worse than the optimum ones, and 1.2°/, worse for
n = 120. Using other FITSP solutions (i.c., next in the non-decreasing
order of the FITSP solutions obtained for other starting points), the
optimum solutions have been obtained for all examples with n < 57.
For n = 42, the optimum solution has been obtained for the second
best FITSP solution, for n» = 48 — for the third best, and for » =57 —
for the fourth best. The best solution for n = 120, obtained with the
FITSP starting solutions, was 0.9 °/, worse than the optimum one and
has been obtained for the fourth best FITSP solution.

TABLE 2
FITSP FRTSP NATSP NITSP NNTSP

n | best a:;; best a;r;;- best a;r ;; best a;r g;. best a.av ; ;
sc.)lu- solu- s(?lu- solu- s<3olu- solu- s?lu- solu- S(.)lu- solu-

tion tion tion tion tion tion tion tion tion tion

10| O 0.94 0 13.68 1.89 | 13.68 1.89 6.60 0 8.49
10 O 0.34 0 1.71 | 11.64 | 18.83 0 3.08 2.40 | 13.36
10 O 1.85 0 6.35 2.91 6.88 0 3.44 0.79 | 11.38
20| 28.45 | 5C 28.86 | 50.81 | 86.58 | 99.59 | 38.21 | 41.87 | 14.23 | 54.07
251 0 0.76 9.59 | 21.33 | 14.70 | 21.80 | 12.04 | 15.55 3.51 | 11.22
271 0 2.69 6.61 | 15.41 | 19.66 | 27.08 3.01 15.51 9.55 | 18.88
271 0.35 4.59 7.10 | 13.85 | 13.88 | 18.87 6.89 | 18.94 4.05 17.00
33| 0.62 2.70 9.16 | 17.71 | 20.21 | 24.28 | 14.93 | 17.43 7.83 | 16.00
42| 1.43 6.15 9.16 | 17.02 | 11.02 | 23.17 | 10.87 | 16.02 | 23.60 | 34.04
48 | 0.11 4.89 14.65 | 23.24 | 15.87 | 23.54 9.51 | 16.74 5.90 | 18.46
57| 1.28 6.14 10.16 | 15.09 | 14.76 | 18.77 9.25 | 13.96 | 11.24 | 22.82
120 | 3.06 7.43 14.53 | 20.76 | 21.78 | 26.39 | 17.27 | 20.48 | 18.77 | 26.98

Table 2 shows that the best and the average solutions obtained by
algorithms A-E are much better than indicated in the Theorem (se¢
Section 2). Namely, except for one example (n = 20), the best and the
average solutions are 25 °/, and 35 °/, worse, respectively, than the opti-
mum ones.

It is worth noting that only two examples, namely for n = 10 and
n = 2b, satisfy the triangle inequality.

The procedures have been also tested on the examples described bY
Papadimitriou and Steiglitz in [7] and the results obtained showed thab
they are really very hard for approximation methods.
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The results of our computations show that
proxgl) the farthest insertion method is superior to the other fast ap-
of £ Mmation algorithms (it was also verified for some random instances.
he TSP, see [8]);

(2) the farthest insertion algorithm produces also comparatively best

starti .
arting Solutions for the Lin-Kernighan algorithm.
conf;:dde'l in proof. The conclusions reached in this paper have been
in [12med by the results of other computational experiments published
TSp a]l.) Approximation algorithms for the asymmetric TSP and k-person
P

€ared in [11] and [10], respectively.
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