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1. Introduction. In [9] Sierpinski showed that, for any set 4, every
function f: A"—A4 is the composition of binary functions on A. If f: A"—>A4
satisfies f(a, ..., a) = a for all ae A, then f is called idempotent. In [8]
it was shown that if [4A| > 3, then every idempotent function on A is
the compositon of binary idempotent functions on 4, while if |[4| = 2,
then every idempotent function on A is the composition of ternary idem-
potent functions on 4 but not of binary idempotent functions (see also [5]).
In this paper* we will consider some classes of idempotent functions
and prove results similar to those above-mentioned. In the case where 4
is finite we will use the theory of semi-primal algebras; this theory permits
us to determine good bounds on the minimal number of functions of
minimal arity needed to generate all functions of a given class. This will
partially settle a question raised in [5].

Definition. Let f: A" >4 and let K > 0; f is K-idempotent if, for
any @, ..., a,¢ A, f(ar, ..., a,)e {a,, ..., a,} whenever |{a,,...,a,}| < K;
f i8 a quasi-projection if, for any a,, ..., a,e A, f(ay, ..., a,)e {ay, ..., a,}.

Thus a 1-idempotent function is idempotent and every function
on A is 0-idempotent; a K-idempotent function on a (K +1)-element
set is a quasi-projection, and an n-ary K-idempotent function is a quasi-
projection if n < K. Note that, for fixed K, the set of all K-idempotent
functions on A is closed under composition, and, similarly, the set of
all quasi-projections on A is closed under composition.

Let Fx be the set of all K-idempotent functions on A, and F the
set of all quasi-projections on A. Let g = (A4; Fg) and A = (4; F).
Note that every subset of 4 is a subalgebra of W while the proper subal-
gebras of g are all subsets of cardinality at most K.

* The work of the author was supported in part by a grant from the National
Research Council of Canada.
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2. The finite case.

Definition. Given an algebra B, % (B) is the set of subalgebras
of B and £ (B) is the set of isomorphisms between not necessarily distinet
non-trivial (i.e. with more than one element) subalgebras of B. We say
f: B"—>B preserves & (B) if, for any a,, ..., a,¢ B, f(a,, ..., a,) lies in the
subalgebra generated by {a,, ..., a,}.

Definition. Let B be a finite non-trivial algebra; B is semi-primal
if every function on B which preserves & (8) is a polynomial of $B.

Semi-primal algebras were introduced by Foster and Pixley (cf. [1]
and [2]). In sections 2-4 we will assume that 2 < |4| < N,; in this case
it is clear that W and A are semi-primal.

Definition. The function ¢(zx, y, 2), defined by ¢(x, 2,2) = 2z and,
otherwise, by t(x, y,2) = , is the ternary discriminator function.

This function was introduced by Pixley in [7].

The following theorem is an immediate consequence of theorem 3.1
of [2] and theorems 3.1 and 3.2 of [7]:

THEOREM 2.1. A finite non-trivial algebra B is semi-primal iff

(1) t(x, y,2) is a polynomial of B,

(2) @ is the identity map on its domain for e F(B).

Let Az = (4;Gg> and A = (4;G)>. Suppose Ax is semi-primal,
and the proper subalgebras of A are the subsets of cardinality at most K,
and suppose U  is semi-primal and every subset is a subalgebra of UA.
Then, it is clear that, for £k > 0, every K-idempotent function on 4 can
be obtained by the composition of functions in G while every quasi-
projection on A is a composition of functions from @. In this section we
are interested in the minimal arity functions in Gx and @ can have; clearly,
Gx must consist of K-idempotent functions and G of quasi-projections.

First, consider the case of K-idempotent functions for K > 2. Recall
that the results mentioned in the introduction deal with the cases K = 0
and K = 1. We may assume |4] > K +2 since, otherwise, we are dealing
with the case of quasi-projections. We must have at least one at least
(K +1)-ary K-idempotent function, else Gx consists of quasi-projections.
Since K > 2, we may thus assume that #(z, v, 2) belongs to Q.

To guarantee that the proper subalgebras of Axr have cardinality
at most K, let 4 = {1,2,...,n} and define fz: AX*'>4 by

a, if [{ay, ..., 6g 1} < K,
max{a,, ..., g} +1 (modn)
(*)  fxlayy ..., 6g,) = if max{a,,...,ag1}—
—min{a,, ..., 0g.,} = K,

min(4 —{a;, ..., ax.,}) otherwise.
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If fxe Gg, then the proper subalgebras of Ax will have cardinality
at most K.

Finally, we need to guarantee that condition 2 of theorem 2.1 holds.
Note, however, that we need only show that condition 2 of theorem 2.1
holds for the two-element subalgebras. Thus, for each a, a,, a,¢ A, define
Ya(@1, @3) DY

a if ¢ =a or a, = a,
Ya(@1y @3) = .
a, otherwise.

Let y,e Gg for each aec A. Let e S () have domain {a, b} with

a # b. Then

p(8) = ¢(yq(b, a)) = y,(p(b), p(a)).

By definition of y,, either y,(¢(b), p(a)) = ¢(b) or y,(p(d), ¢(a)) = a.
In the first case, ¢(a) = ¢(b) which is impossible since & # b and ¢ is
1-1. Thus ¢(a) = @ and, similarly, ¢(b) = b. Since {a, b} and ¢ were
arbitrary, condition 2 holds for Wx. Thus the following theorem has
been proved:

THEOREM 2.2. Let K > 2 and K+2 < |A| < N,. Then every K-idem-
potent function on A can be obtained by the composition of (K +1)-ary
K-idempotent functions on A.

Now, let us consider the case of quasi-projections. If

G = {t(z,9,2)} Vi{vs(z,y) | ac A},

then it is clear from theorem 2.1 that every quasi-projection on A is
a composition of ternary quasi-projections on A. The question remains
whether binary quasi-projections will do; for |A| = 2 we know the answer
is no (see [8]). Notice that if f: A"—>A is a quasi-projection, then, for
any Bc A, f(B") < B. Hence, if |[A|>3 and every quasi-projection
on A is a composition of binary quasi-projections on A, then the same
would be true for every 2-element subset of A (this holds for A finite
or infinite). Thus we have

THEOREM 2.3. Let 2 < |A]| < Xy. Then every quasi-projection on A can
be obtained as a composition of ternary quasi-projections but not by the com-
position of binary quasi-projections.

We close this section by characterizing the polynomials of (4;1t),
where 4 may be infinite. This characterization will be used in section 5.
We say f: B"—>B preserves J(B) if, for any ¢¢ S#(B) and any a,, ..., s,
in the domain of ¢,

@ (f(@1y +.vy @) = flo(ay), ..., p(ay,)).

Definition. Let B be a finite non-trivial algebra; B is quasi-primal if
every function on B which preserves & (8B) and J(B) is a polynomial of B.



74 R. W. QUACKENBUSH

By theorem 3.2 of [7], a finite non-trivial algebra B is quasi-primal
if and only if ¢(x, ¥, 2) is a polynomial of B. Thus, if 2 < |4| < N,, then
{A;t> is quasi-primal. Note that every bijection with domain and range
contained in A is in #({4; t>). Thus, the polynomials of {4 ;> are exactly
those quasi-projections whose values depend only on the pattern of equal-
ities and inequalities amongst the arguments of the functions and not
on the arguments themselves; e.g. t(z,y,?2) =zifx =yand {(r,y,?) =2
otherwise. Any quasi-projection with this property will be called a pattern
function. Thus, if 2 < |A] <N,, the polynomials of (4;¢) are exactly
the pattern functions on 4. However, it is easily seen that this statement
holds even when A is infinite.

THEOREM 2.4. Let |A| > 2. The polynomials of (A;t) are exactly the
pattern functions on A.

The concept of “pattern function” is the same as that of “homo-
geneous quasi-trivial operation” introduced by Marczewski in [6]. Theo-
rem 2.4 is proved in [3] for A finite.

3. Minimal generation — the idempotent case. In this section we
investigate the minimal number of binary idempotent functions needed
to generate all idempotent functions on A (|4]| > 3). It is known [10]
that only one binary function is needed to generate all functions on A.
We now show that all idempotent functions on A can be obtained from
five binary idempotent functions.

We want to find @, such that A, = (4; G, is semi-primal and has
only trivial proper subalgebras. Moreover, @, is to consist of binary idem-
potent functions. Thus, by theorem 2.1, we have to guarantee that

(a) t(z, ¥, 2) is a polynomial of %,
(b) A; has no proper automorphisms,
(c) the proper subalgebras of oA, are exactly the one-clement subsets.

The most difficult condition is (a). We make use of the following
theorem which is implicit in theorems 3.1 and 3.2 of [7]:

THEOREM 3.1. Let B be a finite non-trivial algebra. Then t(x,y, 2)
18 a polynomial of B iff
(i) every non-trivial subalgebra of B is simple,
(ii) B has a polynomial p(x,y, z) satisfying
p,2,y) =p(y,x,2) =y,
(iii) B has a polynomial q(x, vy, 2) satisfying

qz,z,y) = q(z,y,2) =q(y,z,x) = .

We are now ready to describe G,; write A = {1, ..., n}. Let max(z, y)
and min(z, y) be the binary maximum and minimum functions on A.
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Then we have
gz, y,2) = max(min(w, y), max (min(z, 2), min(y, z)))

We do not have to place both max(x, ¥) and min(z, ¥) in G, since if
we can generate p(z, vy, 2) from G,, then

min(z, y) = p(2, max(z,y), y).

Thus we place only max(z, y) in G,. Note that, with max(x, y) eG4,
A, can have no proper automorphisms; thus (b) has been satisfied
as well ag (iii). We now add to G, the function f,(2, y) defined by (*) in
section 2; thus (c) is satisfied. Since U, is an idempotent algebra, every
congruence class is a subalgebra; hence, since f,(x, y)e G,, we infer that
(i) is satisfied. Thus, it only remains to satisfy (ii); for this we turn to the
concept of an idempotent latin square.

Definition. A latin square of order n is an (n X n)-matrix with entries
in {1, ..., n} such that every row and every column is a permutation of
{1, ..., n}. Alatin square is idempotent if the (¢, ¢)-entryisifor¢ =1, ..., n.

To each idempotent latin square L we associate a binary idempotent
function f; by defining f;(¢,j) to be the (¢, j)-entry of L. Consider the
function

p(z,y,2) = h(f(m’ Y), 9(y, z))’

where f, g, b are idempotent functions on 4 and & is associated with the
idempotent latin square L. Then, for p(x,z,y) =y to hold, we must
have h(a:, g(z, y)) = y. Because h is associated with L, it is possible to
solve this equation uniquely for g(x,y) (which will also be associated
with an idempotent latin square). Similarly, the equation h( flz,¥), y) =2z
can be uniquely solved for f(«, y). Then, by adding f(x, v), ¢(x, ¥) and
h(z, y) to G,, (ii) is satisfied and so we are done. Thus, it only remains
to be seen that there exist idempotent latin squares of all orders not less
than 3.

That idempotent latin squares of all orders n > 3 exist is a well
known fact in the combinatorial theory. Let L, M be latin squares of
erder n; let l;(my;) be the (¢, j)-entry of L(M). Then L and M are
orthogonal if

{(lgymy) | 1<4, j<n} ={1,...,n}.

By theorems 13.2.2 and 13.4.1 of [4], for every n > 2 except n = 6,
there is at least one pair of orthogonal latin squares of order n. Thus,
let L, M be orthogonal latin squares of order n. Permute the columns
of L to get a latin square L' such that Ij; =1 for ¢ =1,...,n. Apply
the same permutation to the columns of M to get the latin square M';
clearly, L' and M’  are orthogonal. Hence

{my|i =1,...,n} ={1,...,n}.
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Thus, in M’ make the substitution my—¢ for ¢ =1,...,n to get
the latin square M''; clearly, M’ is an idempotent latin square. For
n = 6, there are no orthogonal pairs, and so we must construct an idem-
potent latin square. The following is one such:

1 3 5 2 6 4
5 21 6 4 3
4 6 3 5 2 1
6 1 2 4 3 5
3 4 6 1 5 2
2 5 4 3 1 6

An obvious question is how many fewer than 5 binary idempotent
functions do we really need. If n is odd, then we can take h(x,y) =
2x¢ —y (modmn). Then it is easily calculated that g(x, y) = h(2, y) while

1 1 -1
i - (2

Note that k(k(2,y),y) = 42— 3y, h(h(h(m,y,y),y)) = 82— Ty and,
in general, we can get 2z —(2¥—1)y by the composition from &(z, y).
If, for some &,

flz,y) = -

n+1
2

2k

I

(modn),

then we can obtain f(z,y) from A(z, y) by the composition. Since the
map  —2x(modn) is a permutation on {1, ..., n}, there is a k¥ > 1 such that
2¥ =1 (modn); therefore,

n+1

k-1 = (modn).

Thus we do not need to add f(z, y) or g(z,y) to G,. We may still
need to add f,(z, y) to G, since, for instance, for n =15, {1, 4, 7, 10, 13}
is a subalgebra of ({1,...,15}; (2, y)), where

h(z,y) = 2x—y (mod 15).

However, the next lemma shows that we do not need f,(z,y) if »
is prime.

LEMMA 3.2. If |A] = n > 3 is prime, then {(A; h) has mo non-trivial
proper subalgebras (where h(x,y) = 2¢—y (modn)).

Proof. All arithmetic will be done modulo .

First, note that (A4; k> has no two-element subalgebras since, for
t,je A with ¢ # j, 2¢—j = ¢ implies ¢ = j while 2 —j = j implies 2¢ = 27,
and since ¥ —2x is a permutation of A, this means ¢ = j; similarly,
2)—1i¢ {i,j}. Thus, if n = 3, we are done.
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If » >3, then >3z is a permutation of A4; hence, 2¢{—j =2j—1
implies 3¢ = 3j which implies ¢ = j. Thus, {4; k) has no three-element
subalgebras if » > 3. '

Assume, inductively, that 4 has no non-trivial subalgebras with less
than k > 4 elements. Let {a,, ..., a;} = 4, < A be a k-element subalgebra
of (4;h) and suppose k < n. Then, for ¢ =2, ..., n,

A = o +(—1), ..., g+ (i—1)}

is a subalgebra of (A4; k). Since k < n and = is prime, A; # A; for i # .
Thus, if ¢ 5~ j, then [4;nA4,/| <k and so [4;NnA4;| <1. Without loss of

generality we may assume that n = a,e A,. Then, fori =2,...,k, a;¢ A,
implies 2n —a; = —a;e A,. Suppose that
n—1
Gy < O3 < 5
(we assume a, and ag are the two smallest members of 4,). Then we may
assume that ¢, = —a, and a; = —az. Thus
n+1

5 <ae;<a, and az—a, =a,—as.

Hence {a,, a5} = A,y s, 80 that |A;NA; ;5| >1. As 1 #1+
+n —2a4, this contradicts the inductive assumption. But then we must
have |4,] <3 again contrary to the assumption. Thus {4;h) has no
subalgebras of cardinality ¥ and so the proof of the lemma is complete.

THEOREM 3.3. Let |A| =n >3 be odd. If n is prime, then there are
two binary idempotent functions such that every idempotent function on A
18 a composition of them; otherwise, there are three binary idempotent func-
tions such that every idempotent function on A is a composition of them.

‘4, Minimal generation — the general case. For K-idempotent func-
tions with K > 2 and for quasi-projections, the minimal number of
functions needed depends on the size of the set A. This is due to the pres-
cnce of numerous two-element subalgebras and the necessity of killing
isomorphisms between them. Only the proof for the case of quasi-projections
will be given since the proof for the case of K-idempotent functions is
quite similar. '

Thus let |A| = n; we wish to find the least number of ternary quasi-
-projections of which @ can consist so that A = (4; &) is semi-primal.
By theorem 2.1 and the remarks which follow it, we must show that

(a) t(x, y, 2) is a polynomial of A,
(b) there are no isomorphisms between two-element subalgebras
other than restrictions of the identity map on A.
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Condition (a) is most easily satisfied by placing ¢(z, ¥, 2) in G@. To
handle condition (b) let f(x,y,2) be a ternary quasi-projection on A
andlet a, b, c,de A. Let ¢(a) = cand ¢(b) = d;in order that ¢ J({(4;f))
it is necessary that f(a, a, b) = a and f(c, ¢, d) = d or some such similar
occurrence.

Consider the ordered pair (@, b) with a = b; there are three ordered
triples in which both a and b appear and in which a appears first: (a, a, b),
(a, b, a), (a, b, b). Since f can take on the values a or b at any of thesc
triples, there are 8 choices for f. Similarly, for the triples (b, a, a), (b, a, b),
(b, b, a), there are also 8 choices for f. However, we have to insure that
p¢ F({A;f>), where p(a) =b and ¢(b) = a. Thus there are 8:7 = 56
admissible choices or patterns for f. Given two ordered distinct pairs
(a,b) and (¢, d) and the mapping ¢(a) =¢, ¢(b) =d, pe F({4;[)) iff
(a, b) and (¢, d) are associated with the same f-pattern. If |4| = n, then A
has n(n —1) ordered distinet pairs; thus, if |4| > 8, f cannot kill all non-
trivial isomorphisms between two-element subalgebras of {4;f)>, while
if |4] < 8, f can be chosen to do so.

If we take 2 ternary quasi-projections f' and f'/, then it is easily
scen that there are 26(2°—1) = 64-63 admissible (f’, f'')-patterns, and so
we can handle sets up to size 64 with 2 ternary quasi-projections. In
general, we can handle sets up to size 2% with k suitably chosen ternary
quasi-projections. Recalling that we have to add in #(x, y, 2) unless we
are able to generate it from the other functions, the following is seen to
hold ([«] is the largest integer not greater than z):

THEOREM 4.1. Let |A| =n>2 and let p = [logg(n—1)]. Then there
are p-+2 ternary quasi-projections such that every quasi-projection on A
18 a composition of them; given any set of p ternary quasi-projections, not
every quasi-projection can be obiained by a composition from them.

Turning to K-idempotent functions, we note that Gx must include
three kinds of functions: fx(X,, ..., Xx,,) as defined by (*) in section 2,
t(x, v, 2), and the functions which kill the potential isomorphisms between
two-element subalgebras. For the latter we are only concerned with the
values of the functions when the arguments come from two-element
subsets of A; thus, we can modify the definition of fi so that it is also
one of the latter functions. Hence, we have the following result:

THEOREM 4.2. Let |[Al =n>K+2 and let K> 2. Let

¢ =205-Y  and p = [log,(n—1)].

Then there are p+2 (K +1)-ary K-idempotent functions such that
every K-idempotent function on A i8 a composition of them; given any p
(K +1)-ary K-idempotent functions, not every K-idempotent function can be

obtained by a composition from them.
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9. The infinite case. In this section we assume that A4 is infinite;
we are concerned with the following questions:

(1) Is every K-idempotent function on A a composition of (K +1)-ary
K-idempotent functions?

(2) Is every quasi-projection on A a composition of ternary quasi-
projections ?

It will be shown that the answer to question (1) is yes, while the answer
to question (2) is no. We will prove, in detail, that an arbitrary 4-ary
2-idempotent function on 4 can be obtained as a composition of ternary
2-idempotent functions. The general case of obtaining an n-ary K-idem-
potent function by a composition from (K + 1)-ary K-idempotent functions
is similar and its proof is omitted.

Thus, let f(o,y, u, v) be an arbitrary 4-ary 2-idempotent function.
For 1 <¢< 6, we define the ternary 2-idempotent function h;(z, y, 2)
by the following:

hi(a,b,c) = f(a,a,b,c), hy(a,b,c)=f(a,b,a,c),
hs(a, b, ¢) = f(a, b, ¢, a), hy(a,b,c) =f(a,b,b,c),
hs(a, b, ¢) = f(a, b, ¢, b), he(a,d,c) = f(a, b, c,c).

Next, we come to the case where a, b, ¢, de A with |{a, b, ¢, d}| = 4.
First, partition A into countably many disjoint subsets 4,, 4,,... such
that |4| = |A4,| for all ¢. For any 4, j, %, I, let ¢[¢, ], k, I] be a bijection
from A;x A;xX A, onto A;. Let a,¢ A;, aye A;, ase A;; write

a, if |{a,, a,y, ag}| <2,

h,(a;y a =
(817 82 G5) oliy ], ky 2°-37-5%1(ay, 6,y a;)  otherwise.

If |{a, b, ¢, d}| = 4, then a, h,(a, b, ¢), and h,(a, b, d) are all distinct
and, moreover, (a, b, ¢, d) is the only distinct 4-tuple in 4* which yields a,
h,(a, b, ¢), h,(a, b, d). Hence, we may write

hs(a’y h,(a, b, ), h,(a, b, d)) = f(a, b, ¢, d)
and in all other cases

hg(ay, ay, ag) = ay.
Thus

hy(a, b, c, d) = hs(a’ h.(a, b, ¢), h,(a, b, d)) = f(a, b, ¢, d)

if |{a,b,c,d}| =4.
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Now we define the pattern function r(z,,..., ;) by

Ts if {2y, sy @5, 2.} = 4,
T if & = ®,,
x, if 2, = as,
T(Lyyenny Xyy) = | Ty if z, = a,,
Ty if @, = @,

Ty i @, =z,

lwu if $3 = a'/'4.

Since r is a pattern funection, theorem 2.4 says that r is a polynomial
in t(x, v, 2) and so is a composition of ternary 2-idempotent functions.
Thus we obtain f(x, y, 4, v) as a composition of ternary 2-idempotent
functions via

f(®,y,u,v) = 7‘(.’17, Yy Uy 0y hy(2, Y, u, v), hy(2, u, v), hy(z, ¥, v),
hy(z, y, u),y hy(x, y,v), hs(x, ¥, ), h(®, ¥y, “))

By imitating this proof, one can prove that every n-ary 2-idempotent
function is a composition of ternary 2-idempotent functions. In the case
of K-idempotent functions with K > 3 one proceeds in a similar manner.
Thus we arrive at the following result:

THEOREM 5.1. Let A be an infinite set. Then every n-ary K-idempotent
Sfunction on A is a composition of (K + 1)-ary K-idempotent functions on A.

To answer the second question we first make an analysis of the number
of n-ary quasi-projections on a finite set. Let N (n, p) be the number of
n-ary quasi-projections on a p-element set. On a p-element set with p >n
the number of n-tuples with no repeated components is bounded below
by (p —n)"; on the other hand, the total number of n-tuples is p™. Hence,

n®-"" < N(n, p) <n?"  for p >n.

Let f be an m-ary quasi-projection on a p-element set such that f is
a composition of (n — 1)-ary quasi-projections. The length of f is the minimal
number of occurrences of (n —1)-ary quasi-projections in any composition
of (n—1)-ary quasi-projections equal to f. Let N(n, p, m) be the number
of m-ary quasi-projections on a p-element set which have the length not
greater than m. Since there are at most ('n—l)"’n—1 (n—1)-ary quasi-
projections on a p-element set, it is easily seen that

N(n,p,m)< On,m(n_l)mpn_li

where C, ,, is independent of p.
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Thus we see that, for p > n,

Nw,p,m) _ Comln—1)"""
Nm,p) g

< Cpm(n— 1)[mPn_l_(p—")n]—>0 as p—>oo.

Hence, for every n >4 and m > 1, there is an integer p(n, m) and
an m-ary quasi-projection on a set of p(n, m) elements which is a compo-
sition of (»n —1)-ary quasi-projections and has the length at least m. Now
we are ready to answer question (2).

THEOREM 5.2. Let A be an infinite set. For every m > 4, there is an
n-ary quasi-projection on A which i8 not a composition of (n—1)-ary quasi-
projections.

Proof. Partition A into countably many subsets 4,, 4,,... such
that |4,] = p(n, ) for ¢ > 1. Let f,; be an n-ary quasi-projection on A4,
which is a composition of (n —1)-ary quasi-projections and has the length
not less than . Let f be an n-ary quasi-projection on 4 such that f|,, = f,
for ¢ > 1; clearly, such an f exists. If f is a composition of (n—1)-ary
quasi-projections, then it has a length, say, m. But then f]| 4; =Jni 18
a composition of (n—1)-ary quasi-projections on A; and has the length
not greater than m. Clearly, this is impossible for ¢+ > m. Thus, f is not
a composition of (n —1)-ary quasi-projections.

REFERENCES

[1] A. L. Foster and A. F. Pixley, Semi-categorical algebras. I. Semi-primal
algebras, Mathematische Zeitschrift 83 (1964), p. 147-169.

[2] — 8Semi-categorical algebras. I1I, ibidem 85 (1964), p. 169-184.

[3] B. Ganter, J. Plonka and H. Werner, Homogeneous algebras are simple,
Fundamenta Mathematicae 79 (1973), p. 217-220.

[4] M. Hall, Jr., Combinatorial theory, Waltham, Mass., 1967.

[6] R.A.Knoebel, 4 simplification of the functional completeness proofs of Quacken-
bush and Sierpitiski, preprint.

[6] E. Marczewski, Homogeneous operations and homogeneous algebras, Funda-
menta Mathematicae 56 (1964), p. 81-103.

{7] A. F. Pixley, The ternary discriminator function in universal algebra, Mathe-
matische Annalen 191 (1971), p. 167-180.

(8] R. Quackenbush, On the composition of idempotent functions, Algebra Uni-
versalis 1 (1971), p. 7-12.

[9] W. Sierpinski, Sur les fonctions de plusieurs variables, Fundamenta Mathe-
maticae 33 (1945), p. 169-173.

[10] D. Webb, Definition of Post’s generalized megalive and mazimum in terms of
one binary operation, American Journal of Mathematics 58 (1936), p. 193-194.

Reg¢u par la Rédaction le 7. 4. 1972;
en version modifiée le 30. 8. 1972

6 — Colloquium Mathematicum XXIX.1



