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EMBEDDING METRIC ABSOLUTE BOREL SETS
IN COMPLETELY REGULAR SPACES

BY

STEPHEN WILLARD (CLEVELAND, OHIO)

Introduction. All spaces we consider are assumed to be completely
regular, and “completely regular” here implies “Hausdorff”. We denote
by o, the first uncountable ordinal and reserve symbols like a, 8 and y
to mean ordinals less than w,.

It is a classical result that the following are equivalent for a metric
space X (see [3] or [4] for notation and terminology):

(a) X is an absolute G,;

(b) X is a G5 in BX;

(e) X is a G, in some compactification K of X;

(d) X is a G4 in every compactification K of X;

(e) X is a G, in its closure in every completely regular space in which
it is embedded.

In [4] we generalized the equivalence of (a), (b), and (¢) to arbitrary G,
sets.

In this paper (!), in Section 1, we prove a lemma (1.1) which enables
us to simplify considerably the treatment given in [5] and extend the
generalization to parts (d) and (e). In fact, the lemma provides interesting
information about the “absolute Borel” behavior of non-metric spaces
as well; one of its consequences is: Y is a G, in BY if and only if Y is
a G; in its closure in every completely regular space in which it is embedded.

Thus, predictably, X assumes the role for completely regular spaces

that the metric completion X plays for metric spaces, at least where
“absolute Borel” properties involving the open sets are concerned. Hope
for similar theorems involving the closed sets is considerably dimmed
by a result of Choquet (namely, every K-analytic set is Lindelof) from
which it follows, for example, that whenever a metric space X is an F,
in X, it must be separable. Since non-separable metric absolute F,
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sets abound, the best one could hope for is an embedding theorem res-
tricted to the separable or Lindelof spaces. Here a result of Frolik [1]
is of interest: a metric space X is a separable absolute Borel set if and
only if X is Baire (generated from the compact G; sets by countable union
and intersection) in gX.

In Section 2 we provide the obvious extension to Souslin ¥ sets.
The theorems of this section are stated, as nearly as possible, in the same
order and form as the corresponding theorems of Section 1, and the
proofs, being essentially the same, are either abbreviated or omitted
altogether. Again, the principal result is the following: Y s Souslin ¢
in Y if and only if Y is Souslin @ in its closure in every completely reqular
space in which it is embedded.

1. Absolute Borel sets. We need some terminology. If s# is any
family of sets in a space Y, we define the collection 5, of sets for f < w,,
inductively, as follows: 5, = 5, if 8 = 0; 5, consists of all countable

unions and intersections of sets from |J 5#,, if g > 0.
y<B

The G, sets in Y, when Y is a topological space, are the sets in the
collection g,, where g is the collection of open sets. We will use the fact,
easily proved by induction, that any @, set belongs to #, for some
countable subcollection 5# of g¢.

Our proof of the main lemma (1.1) makes use of the following well-
known fact:

1.0. LEMMA. If h is a continuous mapping of a space Z into a space K
whose resiriction to a dense set Y is a homeomorphism, then h carries Z—Y
into K—h(Y).

For a proof see [2], Lemma 6.11.

1.1. LEMMA. If Y is a dense subset of Z and h is a closed continuous
map of Z onto K such that h|Y is a homeomorphism, then to each G, set B
in Z we can assign a G, set B* in K such that ' (B*) « Band Y ~ h™'(B*)
= Y ~ B.

Proof. The proof proceeds by induction. Let B be open in Z and
define B* = K—h(Z—B). 'Then B* is open in K since h is
a closed map. Moreover, if z<h™'(B*), we must] have h(z)¢h(Z—B),
80 2¢Z— B, from which we obtain A~ '(B*) ¢ B. Finally, we have
Y ~h'(B*) = Y ~ B, for one inclusion is obvious since h~!(B*) < B,
while on the other hand, let zeY ~ B and suppose h(z) = h(y).
It follows that yeY since otherwise h(Y)~ h(Y—Z) #0, which
violates the Lemma 1.0 stated above, and hence y = z since.otherwise
h is not one-one on Y. Thus if #eY ~ B, h(x)¢h(Z— B), therefore
h(z)e K —h(Z— B); whence zeh~'(B*). This completes the proof of the
inductive assertion for the case a = 0.
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Suppose now that all G4 sets for f < a have the property of the
theorem, and let B be a G, set in Z. If B = ﬂ B, where each B, 1s aGg,

n=1 oo

set in Z for some fn < a, then we can set B* = ﬂB while if B = U B,,

we set B* = U B;,, where in either case the B are Gy sets in K ea.ch

n=1

having the appropriate properties relative to the corresponding B, by
the inductive hypothesis. It then easily follows, in either case, that B* is
a G, set in Z with the properties that »~'(B*) <« B and h™'(B*)~n Y
=BnY.

This completes the proof of Lemma 1.1.

We are now prepared to prove the main theorem. Throughout, if
f: Y - K is a map of Y into the compact space K, f’ will denote the
well-known Stone extension map f’:8Y — K. We will use properties
of f/ and pY without apology, referring the reader unfamiliar with these
properties to [2].

1.2. THEOREM. If Y is a G, in BY, then Y is a G, in every compacti-
fication K of Y.

Proof. Let f: Y - K be the embedding of Y into K. Since Y is
a G, in Y and dense in Y, while f* is closed, continuous and a homeo-
morphism when restricted to Y, we can apply Lemma 1 1, which then
asserts the existence of a G, subset ¥* of K such that (f°)~! Y*) Y=Y,

while (f/)"%(Y*) <c Y. It fo]lows that Y* = f*(Y), which proves the
theorem.

Note that the following corollary to Theorem 1.2 generalizes a well-
known result, namely that a locally compact space X (i.e. a space X
which is open in fX) is open in its closure in whatever Hausdorff space
it is embedded, except that in the result below, we allow only completely
regular embeddings of X.

1.3. COROLLARY. If Y is a G, in Y, then Y is a G, in its closure
in every space Z in which Y is embedded. Hence, Y is absolute Borel (among
completely regular spaces).

" Proof. If Y is embedded in Z, then 8(Cl;Y) is a compactification
of Y,s0if Yisa@G,in pY, it is a G, in B(Cl; Y) and thus in Cl; Y. This
completes the proof of 1.3.

1.4. COoROLLARY. For a metric space X, the following are equivalent:

(a) X is absolute Borel (among metric spaces);

(b) X ¢s an absolute G,, for some a;

(¢) X is a G, in fX;

(d) X is a G, in K, whenever K is a compactification of X;

(e) X is a @, in every perfecily normal space Y in which it i embedded;
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(f) X 48 a G, in Clz X whenever X is embedded in the completely regular
space Z;

(g) X 48 absolute Borel (among completely regular spaces).

The scheme of proof is (a) = (b) = (¢) = (d) = (e) = (a), while
also (d) = (f) = (g) = (a).

Proof. (a) is equivalent to (b) by the classical result that a metric
space is a @, in its completion if and only if it is an absolute G,.

If X is an absolute G,, then X is a G, in its completion':X which,
by a classical result due to Cech, is a G5 in fX. Thus, X is a G, in gX.

Since ,BX is a continuous image of fX by a map whose restriction to X
is the identity, by taking inverses under this map, X must be a G, in
pX. Thus, (b) implies (c).

That (c) implies (d) follows from Theorem 1.2.

The same argument used in Corollary 1.3 can easily be applied to
yield the conclusion that (d) implies (e), and (e) obviously implies (a).

Again, the argument of Corollary 1.3 shows that (d) implies (f),
while certainly (f) implies (g), and (g) implies (a) are clear.

This completes the proof that the seven properties listed are equi-
valent.

2. Analytic sets. Let 5# be a collection of subsets of Y. A set X in ¥
will be called Souslin s if and only if X is a result of the operation o7
(see [4]) carried out on sets of . It is a classical result, easily proved
with the aid of Lavrentieff’s Theorem, that a subset of a complete metric
space Y is Souslin ¢, where ¢ is the collection of open sets in Y, if and
only if it is Souslin g in whatever metric space it is embedded. Of course,
in a metric space, if # denotes the collection of closed sets, “Souslin ¥”
and “Souslin #” refer to the same collection of sets. In more general
spaces (in particular, in non-perfectly normal spaces) this need not
be so.

Our purpose here is to show that X plays the role of the complete
metric spaces, in the passage to more general spaces, at least if one deals
with the Souslin ¢ sets. The key is the following restatement of Lemma 1.1
for Souslin sets:

LeMMA 2.1. If Y is a dense subset of Z and h is a closed continuous
map of Z onto K such that h|Y is a homeomorphism, then to each Souslin %
set B in Z we can assign & Souslin % set B* in K such that h~'(B*) c B
and Y ~ h"'(B*) = Y ~ B.

Proof. Let S denote all sequences of positive integers. Let B be
a Souslin ¢ set in Z, say,

oo

B = U n Bnl...nk7

{nl,nz. .. .}ES k= 1
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where B, n, i8 an open set for each k-tuple n,, ..., nx. For each B, .,
define

B::,l...nk = K— h(Z_ Bnl...nk) .
Finally, let

B* = U N le...nk-

(Ttl,ﬂz, . .}GS k=1

Then B* is Souslin ¢ in K and routine checking verifies that B* has
the properties asked for in the lemma.

2.2. THEOREM. If Y is Souslin ¥ in Y, then Y is Souslin 4 in every
compactification of Y. )

Proof. If f: Y — K is the embedding of Y into K, and f* is the
Stone extension of f, then Y is dense in Y and Souslin ¢, and f* is a closed
and continuous map whose restriction to Y is a homeomorphism, so by
Lemma 2.1, there is a Souslin ¢ set Y* in K such that (f%)~'(¥Y*) < ¥,
and Y ~ (f%)"'(Y*) = Y. It follows that Y* = f°(Y), which proves
the theorem.

2.3. COROLLARY. If Y .is Souslin 4 in fY, then Y is Souslin ¥ in its
closure in every space Z in which it is embedded.

We remark that it is well known that for separable metric
spaces the analytic sets, that is, the sets which are continuous images
of Borel sets, are precisely the Souslin ¢ sets. This fails in more
generality, however, although in any metric space, every analytic
set is Souslin ¥.

The following result is now clear:

2.4. THEOREM. For a metric space X the following propositions are
equivalent:

(a) X <8 Souslin 4 in every melric embedding;

(b) X 48 Souslin ¥ in its metric completion ZY;

_(e) X is Souslin ¢ in BX;

(d) X ¢s Souslin ¢ in every compactification K of X;

(e) X ts Souslin ¥ in every perfectly normal space in which it is
embedded ;

(f) X is Souslin 4 in Clz X whenever X is embedded in a completely
regular space Z.

Proof. The scheme of proof is (a) = (b) = (¢) = (d) = (e) = (a),
while also (d) = (f) = (a). The details are in no essential way dif-
ferent from the details of the corresponding parts of the proof of
corollary in 1.4.
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