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Let V. be an n-dimensional space with a linear connection I" given
with the aid of components I'j, in each local map U on a differential
manifold V,. Space V. will be called I-space. The set of differentiable
vector fields on V, will be denoted by 7 (V,), the set of differentiable
real-valued functions by #(V,), and the set of real numbers by R.

Let (U,¢) be alocalmapon V,,Uc V,,9p: U >RXREX...XR,
¢(X) = (2 ...,2"), where XeV, and (2, ...,2") is a coordinate system
on U.

We introduce the following notations:

(a) if {e;} is a natural basis of J(U) and veJ (U), then v = v'e; and
v, = v,e;(X)eT,, where T, is the vector space tangent to V, at the point
XeV,;

(b) if feF (U) and ve T (U), then (d,f), = (0;f),v%, d,f: U~ F(U) and
df: X v (dpf)., XU, (1ffe.9"(V,,)a.ndveﬂ'(V,,),thendtf V,—#(V,)and
d,f: X — (d,f),), where (d,f), is the partial derivative df/ds’ at XeU;

(e) if V;F, ¢ =1,...,n, i8 a covariant derivative of a tensor field F
on V, (or on U) and 'veﬂ'(Vn) (or veZ (U)), then (V,F), = (V,F),v. and
V,F: X +— (V,F),, where XeV, (or XeU).

Let us consider now a fixed differentiable tensor field = of the type
(0,2) on V,, n: T(V,)XT(V,) > F(V,), and a vector field we7 (V,)
with w, # 0 for each. Xe¢V,. On a local map U < V, tensor = can be
written in the form

;i (vy, V) > mgvivd, v, = vhe;e T (U), mye F(U).
Tensor = will be called non-singular if there exists an atlas & on V,
such that det(n;) # 0 in each local chart of «.
- We will construct a covariant vector field
(1) a’: v, >nv,w), ov,weI(V,)
Definition 1. A vector field we7 (V,), w, # 0 for each zeV,, is
called =-geodesic if

(2) V2" = A, AeF(V,), n%: v > n(v, w),
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where n: 7 (V,)XT (V,) => #(V,) is a non-singular tensor field of the
type (0,2) on V,.
Integral curves of n-geodesic vector field will be called =-geodesics
(they are curves satisfying, in each local map of V,, w* = da'/dt, w = w'e,).
Let us write condition (2) in the coordinate system (z',...,a") of
a local map U of V,, where I'f % are components of a linear connection
on V,. Then

i i

n’: v n(v,w) = ni,-'v"w" = Jt}”’vi, ny = nijwj1

Vori = Vin? 'w = (0p 7y —Tgml)w* = (0w’ + 7y 0,0 — I w’) w*
= (Vimyw + my Vw0 ) w*;
Ver’: v Vol
Setting w* = da’/dt, we obtain a diﬂerential equation of n-geodesics

dzw’ dzv" dr? da’

or
&zt dz® dx® daxt 3 ,
(3) e + (Vi spen® +st) dt dt = 17’ et = 0.
Functions
(4) ks = Viapen® + T},

arc components of linear connection G on V,, and (3) is a differential
equation of geodesics in the ordinary sense in the space V¢ with the linear
connection G. Thus we obtain

THEOREM 1. n-geodesics in a space V, are geodesics in ordinary sense
in the space V&, where connection @ is given by formula (4).

From this theorem it follows immediately

THEOREM 2. If g i3 a metric tensor of a Riemannian space V,, then
g-geodesics in V, are geodesics in the ordinary sense.

Let VZ and VI be two spaces with the linear connections I and I
We consider n-geodesics in Vy a.nd n-geodesics in ﬁﬁ Theorem 1 allows
us to treat a mapping f: V, — V,,, which maps =- geodesws onto 7- geode-
sics, as a geodesic mapping of a G-space (V,, @) onto a G -space (V,,, G)
where .
(5) Gl = Vimpn® + T, @h = Vyaa®+ T,

(6 denotes the covariant derivative with respect to f’;,,)
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Assuming that mapping f is given by equal coordinates in local
charts U ¢ V,and U < V,, we can write differential equations of geodesics
in ¥ and V¢ in the form

Fo* At de? At @ . Al d? | Aot

(6) @ T a Tt +6 @@ M@

respectively, whence, by subtraction, we. receive

Q5 — — = (A—p)—
(GG = = () —
Setting
(7) PY =@5—-6Y = V,nijn""—i-l’,’;—v,.;zﬁfz”"—]’g, A—p =y,
we have

, 4o’ do®  adk
P~ @t ~ V@

Multiplying (8) by dz?/dt and p¥; (da’[dt)(da®|dt) = y(da?/dt) by do*|dt
and subtracting, we obtain

do® dx? dx? , 4a° da* da’

T T Tl TR TR

(8)

or

dx® da’ dx" dx® da’
(8* k ¢ ok =
(8%) a4t dt T dt p”dtdt'dt 0
whence
(9) ) pk(aj 53)“Pq(aj 55') =0,

where ( ) denotes the symmetrisation with respect to indezes in brackets.
Contraction over r and ¢ yields

\ (n+1) (P + p%) = (0% + %) 8§ + (9% + P) &%,
‘whence, setting

1 1
(10) Py = 07 Pl = 517 (G —G%),
‘we obtain
(11) Plen = Pa 05 +;6;.

From (11) it follows (9) and, subsequently, (8*). Settlng ada*|dt = 1,
Py (da® (dt) (d |dt) @, = y, weinfer (8) from (8*). Calculating G (da* [dt) (da? |dt)
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from formula (8) and inserting it into the first equation of (6), we obtain

the second equation of (6), that is, the equation of geodesics in G-space.
Thus we have proved that Weyl’s condition (11) is sufficient and necessary

for the existence of a (local) geodesic map of G-space onto G-space (by
equal coordinates). ‘
In particular, if

T = Fk = Pik’ G = Vy'npk”pi-i'f'jik’ Vi= Vay
then, by (11),

' A 1
p;:k = _anpknp" 2ps = — n__i_'i (Vj”psnpj"'vsnpjnpj)’
pi 1 P8 &t D8 §i
(12) Voo™ = 277 (Vapin " O+ Vpia 27 ).

Thus we obtain

THEOREM 3. Condition (12) is mecessary and sufficient for n-geodesics
in I'-space be (locally). geodesics in the ordimary sens.

If a tensor n satisfies condition (12) and fe F (V,,), then the tensor y = fx
also satisfies (12).

Since in the indicated case condition (12) is equivalent to (11), the

local mapping given by equal coordinates of V. onto V,,, where G"
= V;mpn® + I, is geodesic, and thus if (12) is satisfied, geodesics in V’

and V¢ are the same curves in V,. The second part of Theorem 3 follows
immediately from 12 by inserting fn” instead of m;;.

In the same way, if we set V,, = V,,, I}, = I‘jk, G = V; npkn’”—l— 1"'-",‘,
ék = V,m, n" + T}, one can show
THEOREM 4. If
1
n+1

— Via®ip10 7% 8} + (Vo 011y BP0 — V o 7 15, 779 611,

(13) V@™ — Vipma™ = [(V (g7 7™ —

then m-geodesics and fz -geodesics in VL are the same (locally) ourves n V,.

If tensors m and w satisfy (13), then tensors n = fn and 1 = gn, where
[y 9eF(V,), also satisfy (13).

Now let us restrict our considerations to a Euclidean space E, and
an oriented surface S,_, in it. Orthonormal coordinates in E, will be
denoted by 2% and local coordinates in U = §,_, by «*; thus § is locally
given by the mapping x: (), ..., s" ")~ 2(ul, ..., u" "), 2 = 0X, x:
RX..XR—->U, XeU, U = {0X; XU}, where OX is a vector with the
origin at the point OeE,.
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The non-singular second fundamental tensor of the oriented surface
S,_, will be denoted by b,

b: T (8p_1) XT (8p_y) > F(8n_1),  b: (v, w) > by Dwl, v, weT (U);

v =z, w=uwa, @ =0z/0w, b;=uaz;n=—a;n,

where # is the unit vector normal to 8,_,, n; = 0n[0u’, z; = 0% /(' du').

We write formula (12) for b. Since Vb, = V;b;,, we have

Vb = (01— Tfibyy — I big) b7,
0jbiy = —0;(My,) = —Nyj &, — Ny T
= —(Z¥ine+Byn) . —ny (I, 05+ bjen) = 250, + by,

where I, are components of the Levi-Civitd connection on §,_,, and
Z; on the unit sphere S _1 being the image by normals to §,_,. Now,
we have ‘
(14) Vb b = 2f — T

and (12) can be written

(15) it — ik = D O+ Py 65,
1 1 L1 o
p]- = X ijarbsr = —77 (E:J_FSJ) = 2—n"6710g—"

where ¢ is the determinant of the first, and o of the third fundamental
tensor of S,_,. But (15) is Weyl’s condition for a geodesic (local) mapping

of 8,_, onto S,_,. Thus, we obtain

THEOREM 5. b-geodesics on a surface S,_, in a Euclidean space E, are
(locally) geodesics 'm the . ordmary sense if and only if the (local) mapping

of S,_, onto unit sphere S,, . by mormals is geodesic.

If 8,_; and Sn_l are two surfaces in %,, then from (7) and (14) we

obtain pk = Z.',Z,‘.—ZA‘,’,‘-, and from Voss-Weyl’s theorem (cf. [3], p. 149)
and (11) we have

a

~ g
(16) Z—25 = P Oj+p;8, Py = 5-0;log—

where ¢ and o are determinants of the third fundamental tensors of S, _,
and S,_,, respectively. Formula (16) can be interpreted as follows:
THEOREM 6. The (local) mapping f: S,_, - S,_, by equal coordinates

on surfaces S,_, and 8,_, in E, is b-geodesic if and only if the mapping
by equal coordinates of their spherical images by normals is geodesic.
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A mapping f: 8,_, —> S’,,_, is called b-geodesic if it maps b-geodesics
on 8,_, onto b-geodesics on §,_,.
We consider now an oriented surface S, in E,.

Definition 2. A vector field w on 8, is called shadow if there exists
on 8, a vector field » # 0, v # w, such that d,» = 0 and V, v = 0, where
d,v = d,0w", V,v = V, o'z, = V,o'w'z, w=wz, =we, ((=1,2;
a=1,2,3).

Integral curves of a shadow vector field w will be called lines of
shadow on 8,.

In a local map U < § we have along a line of shadow L,

t>ut(t), v =1vz=1%, w=wz w =did,
1=1,2; a =1,2,3; x; = xje,,
d,v° = d,(v'af) = d,v'a] +v'd,a] = d,v'af+ v afw
= d,v'af + o' (IGas + byn®)w
= —Ihaiv*w” +o* Thw of + v*byw'n® = 0,
because V,v' = d,o°' +Ijw'v* = 0. Thus we have
o*bw =0 or  oFbY,

where by = b,;w’ along L.
Derivating covariantly the last identity, we obtain

b =0, VWY =0, k=1,2,
or
(17) Vob? = AbY, weT (8,), AeF(8,).

Comparing (17) with (2), we have for a surface S, with the Gaussian
curvature K 3 0 the following result:

THEOREM 7. Lines of shadow on a surface Sz with K # 0 in E; are
(locally) b-geodesics on S, and inversely.

Let 8, and S, be two surfaces in E; with the first fundamental ten-

sors g and ¢, second fundamental tensors b and I;, and third fundamental
tensors » and », respectively,

v: (v, w) — v;v'w, Vi = N3Ny, Vij = NNy,
detvi]’ = 0', det;,-, = 0', detg1j = y,> detbu' = )A’-

-

By virtue of [1], p. 206, we have ¢ = K*y, ¢ = K’}
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For a b-geodesic mapping f: §, — Sz by equal coordinates, formula
(16) holds, where

1 K2y
p; = 9;log Foy

Now assume that a b-geodesic mapping f: S, — S’z is isometric.
Then from (16) we have Zg = i‘,’;, and from Theorem 2 of [2], p. 10,
we obtain v; = ¢vy, ¢ = const, ¢ > 0.

For isometric surfaces we have det »; = det»;. Then ¢ =1, and
since v;; = 2Hb; —Kg,;, where H _is the mean curvature of S,, Hb; = f!i),-,-.
Multiplying last identity by ¢” and summing with respect to ¢,j, we
obtain H? = H? and by = +b,.

Thus

THEOREM 8. If two surfaces S, and ;§2 in E; are isomelric and isometry

preserves b-geodesics, then S, and S, differ (locally) by a Euclidean motion
(v.e., they are congruent).

We have decided to publish these simple results to call attention
to a possibility of applications of n-geodesics to a study of surface in
Euclidean or Riemannian spaces. If a tensor n is defined in a natural
way, then =-geodesics are curves having geometrical interpretations
and may serve in explaining some further properties of surfaces or spaces
with linear connections. One may wonder why these so naturally defined
curves are not used in handbooks for students, although the theory of
n-geodesics is a part of the theory of geodesics in spaces with linear con-
nections. We have given an example of b-geodesics, but we cannot give
a geometrical interpretation of other natural =-geodesics, for instance,
if n is Riceci tensor of a Riemannian space or third fundamental tensor
of a gurface in E,.
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