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PERIODIC POINTS AND BIFURCATION OF ONE-DIMENSIONAL
MAPS

1. This note concerns the problem of dependence of the behaviour of
the sequence {x,} generated by the difference equation

(l) xn+1 =f;(xn)

On the value of a real parameter ¢ if f, is a one-dimensional function. This
Problem is important in applications, for example in theoretical biology (see
[7] and References therein) or in the theory of weather prediction (see [6]).
N situations important in applications the following conditions are satisfied.

For every ¢ the function f =f, maps the interval I = [0, 1] into itself,

Q) fO=f)=0,

S has exactly one critical point ¢ = c,e(0, 1).
The classical situation where /; is given by the formula
G) fi) =tx(1-x), xel, te[0, 4],

has peep studied extensively in many papers. It has been shown (see for
®Xample [5], [6], [7]) that £, has for 1 <t exactly one non-zero fixed point
p,. Which for t < 3 attracts all points of I except of 0 and 1 (all definitions
Wil be given later). For 3 <t the point p, bifurcates into a 2-periodic orbit

i“llllnch fqr t < 1+\/3 attracts all points of I except of 0, 1, p, and succesive
an"erse Images of p, under f,. Similarly there appears a 4-periodic orbit,
wh 8'p€r19dic orbit, etc. These orbits succesively attract all points of I\E,
apere E is a countable set. However for r >t (approx. tq = 3.570) there
arfefar h-periodic orbits with n different from 2* for all k. For example there
_Or r=3627 a 6-periodic orbit, for t =3.75 a S-periodic orbit, for ¢
=383 4 3-periodic orbit. For t = 3.76 it is hard to decide, whether the
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attracting periodic orbit exists. For t =4 there are no attracting periodic
orbits.

Similar phenomena occur for other families of functions (see [4] and [7]
where some numerical results are given). We give the qualitative description
of the above phenomena in the case if f, satisfies for every ¢ the Singer
condition

4) S(f)(x) <0,

where

0 3
S =" _2(f’(x)

is the Schwarzian derivative of f (see [3], [11]). It is shown in [11] that
the above condition is satisfied in most situations considered in applications.
Our results generalize and complete known results obtained for the family (3)
(see [5], [6]) and for families similar to (3) (see [7]). Some of these results
one can probably obtain using kneading theory (see [1], [3], and References
in [1]). However the methods presented here are more elementary. Our
consideration can be repeated if f, maps an interval [0, A] into itself, 0
<A< x. If'A = o0, the condition f(4)=0 means that lim f(x) = 0.

X

\2
), for x#c¢,

2. Let f: I—1I be a continuous function. Define the nth iteration
of f as follows: f° =identity, f"*' =fof™ For xel the orbit o(x) of
x is the sequence | f"(x)}&. The w-limit set w(x) of x is the set of all limit
points of o(x). A point xel is n-periodic if o(x) contains exactly n points,
eventually n-periodic if f*(x) is n-periodic for some k and asymptotically n
periodic if w(x) = o(y) for some n-periodic point y. The 1-periodic point i_S
said to be the fixed point. A set A < I is said to be n-periodically invariant .lf
f"(A) = A and f*(A) ¢ A for 1 <k < n. The 1-periodically invariant set 15
called the invariant set. If A is n-periodically invariant, then the set o(4)
=AUf(A)u...uf""1(A) is said to be the generalized n-periodic orbit. AP
invariant set A < I is absorbing in a set J < I if for every xeJ there exists k
such that f*(x)e A. An invariant set A < I is attracting in a set J < 1!
w(x) = A for every xeJ and if J is a neighbourhood of 4 we call the set
an attractor.

It is easy to see that o(x) is an attracting periodic orbit with respect
to f if and only if x is the attracting fixed point of f" and f*(x)# X for
1 <k <n. For an n-periodic point x the eigenvalue A(x) is the numbe’
(Y@ =f(f"""(x)...-f'(x). For |[A(x)| <1 the set o(x) is an attractor, fof
|A(x)] > 1 the set o(x) is not an attractor (we say non-attractor). If the set /
is absorbing with respect to f” (in some set J) then the generalized n-periodlC
orbit is absorbing.
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3. The Schwarzian derivative S(f) of f defined for functions of class C3
by formula (3) has been used by David Singer ([11]) to investigate the
difference equation of the form (1). We quote some results from [8] and [11].

ProrposiTioN 0. (i) Let f and g be functions of class C3. Then
S(fog)(x) = S(Ng(x)g' (x)*+S(g)(x).

Assume that the function f satisfies the condition (4).

(i1) For every n the function f" satisfies the condition (4).

(i) The function f' cannot have a positive local minimum.

(iv) If f has finitely many critical points, then f has finitely many fixed
boints,

(v) If p is the fixed point of f with |A(p)| <1, then p is attracting in the
interval J containing p and d, where d is a critical point or is the end of I. If
additionally 1(p) # 1, then p is the attractor.

(vi) If f satisfies the condition (2), then there exists at most one attracting
Periodic orbit.

4. We give two propositions from the bifurcation theory provided the

lsinger condition (4) holds. We start from a simple and not hard to prove
€mma.
- Lemma 1. Let f;: -1 be a family of functions defined for t from an
Interval T. Let A = I be a compact set, let the mapping T x A3(t, x) - f,(x)e ]
be continuous. Put R,(4) = {xe A: f,(x) = x}. Then for every toeT, ¢>0
there exists & > 0 such that for |t—to| <0,

R,(4) = B(R,y(A), &) = {xe A: |x—y| <& for some ye R, (4)}.

Now, let f;: I — I be a family of functions of class C3 defined for ¢ from
an.interval T, such that the mapping (¢, x) —)f,“’ (x), i =0, 1, 2, is continuous
(/9 denotes the ith derivative of f). Assume that f, satisfies for every te T
the condition (4).

ProposiTION 1. Let seT, pe(0, 1). Assume that f(p)=p, fi(x)>x
fs('x) < x respectively) for x from a neighbourhood V of p, x # p. Then there
€Xist neighbourhoods S of s and U of p such that for teS the equation f,(x)
—. X either has no solution in U, or has exactly one solution q in U and then

t (q,) =1, or has exactly two solutions q, < q, in U and then 0 <f/'(q,) <1
<J'(@2) (0 <f'(g)) <1 <f(qy) respectively).

. Proof. Assume for instance f.(x) > x. The condition (4) implies that
55 (P) > 0. This condition and the Mean Value Theorem permit to choose
"eighbourhoods § and U such that for teS the equation f,(x) = x has at
EOSt two solutions in U and f(x) > x for xe V\U. One can apply once

OTe the Mean Value Theorem to complete the proof.

T Proposition 2. Let seT, pe(0, 1). Assume that f(p)=p, f/(p)= —1.
€N there exist neighbourhoods S of s and U of p such that for teS§ the
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equation f,(x) = x has exactly one solution q in U, and either f/'(q) = —1,
or there exist exactly two points q,, q, in U such that q, <q < q,,
£2(q) =qi,-i=1, 2, and then 0 < (%) (q;) < 1.

Proof. The first part follows from the Implicit Function Theorem. We
prove the second part. Note that f;2(p) = p, (£,>) (p) = 1,:(f2)"(p) = 0, and by
the condition (4) ()" (p) < 0. By the Taylor Theorem, we have f.2(x) > x for
x <p and f2(x) < x for x > p. One can choose neighbourhoods S and U
such that for teS (£%)'(x) >0 for xeU and f*(x) > x for x <gq, x¢ U,
f2(x) <x for x >¢q, x¢ U. Let teS and let f'(q) < —1. Then (£,*)'(q) > 1
what means that the equation f;?(x) = x has solutions ¢, < q and ¢, > q in
U. The Mean Value Theorem and Proposition O (iii) imply that the above
equation has no solutions except ¢, q,, q, in U. Hence q, =£,(41), 91 =/1.(q2)

and (£ (a1) = (£ (g2) <1.

5. Assume in this section that the C® mapping f: I — 1 satisfies
conditions (2), (4) and

) [ (0> 1.

LEMMA 2. There exists exactly one non-zero fixed point of f.

Proof. Conditions (2) and (5) imply that the fixed point exists. If two
non-zero fixed points g, < q, exist, then g, < c. The Mean Value Theorem
implies that f’(a) =1 for some a < q,. Proposition 0 (iii) implies that the
function f(x)—x decreases in the interval (a, 1) which contradicts f(q2)
=43, 91 <4q>-

In the sequel the unique non-zero point of f is denoted by p.

LEMMA 3. If the fixed point p is a non-attractor, then there exists a unique
2-periodic orbit.

Proof. We show that f2(a) < a for some a < p, which together with
the inequality (f2)'(0) > 1 imply the existence of a 2-periodic orbit {p;, p2}>
p1 <p < p,. Assume the contrary, ie. that f2(x) > x for every x < p. BY
the uniqueness of p we have ¢ < p. For ¢ < x < p we successively obtain:
p<f(x), x<fix)<p, p<fix)<f(x), x<f?(x)<f*(x)<p, etc. The
sequence {f2"(x)} has a limit ¢ < p and f?(g) = q what means that ¢ = P>
but this contradicts the non-attractivity of p.

Let {q,,q,} be a 2-periodic orbit. It is clear that g, <p <q: for
q, < q,. Similarly as in the proof of Lemma 2 one can show that g, = P2
and hence q, = p;.

ProrposITION 3. The following conditions are equivalent:

(1) The point p is the attractor,

@ f'(p) = -1,

(ii1) There are no n-periodic orbits for n > 1,
(iv) The point p is attracting in (0, 1).
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Proof. Obviously (iv) implies (jii). (iii) implies (i) by Lemma 3. (i) and (ii)
are equivalent by Proposition 0 (v) and Lemma 2. It suffices to prove that (ii)
implies (iv). Let ¢ < p (for p < ¢ the proof is obvious). By Proposition 0 (v), p
Is attracting in [c, p] and hence [c, f(c)]. For every xe(0, c) there exists an
integer k such that ¢ <f*(x), otherwise the sequence {f "(x)} has a limit
9 <c and f(q) =q <p. Since f*(x) <f(c), the sequence {f"(x)} tends to p.
Since for xe(f(c), 1) we have f(x)e(0, f(c)), the point p is attracting in
(0, 1). )

For xe[0, f(c)] denote by x;, and x, the uniquely defined points of I
satisfying f(x) =f(x,) =x and x; < ¢ < x,. Similarly x; =(x));, x, = (x)),,
ctc.

ProposiTION 4. Let the point p be the non-attractor and let
(6) p<f3).
Then:

(i) The interval P = [p,, p,] is absorbing in (0, 1),

(i) The intervals L={p,, p] and R ={[p, p,] have the properties:
S(L)=R, fR) =L, fA(Ly< L, f?(R) =R,

(iii) The restrictions f2., f*r are topologically conjugate with a
Mapping f,: I — I satisfying conditions (2), (4), (5),

(iv) f has a 2n-periodic orbit (attracting 2n-periodic orbit resp.), if and
only if f, has an n-periodic orbit (attracting n-periodic orbit resp.),

(v) f has no (2n+ 1)-periodic orbits for all n> 1,

(vi) If f; has a generalized n-periodic orbit (absorbing resp.), then f has a
9eneralized 2n-periodic orbit (absorbing resp.),

(vii) f3(c) = p if and only if f,(c,) = 1, where c, is the critical point of f,.

Proof. It is easy to see that ¢ < p, and therefore

g<p<c<p<c <py.

The mapping f2 has three critical points: at ¢; and ¢, it has its maximum,
and at ¢ it has a local minimum. The condition (6) implies the inequalities
o) > P, f(c) =f%(c,) < p,,. Hence the interval P is invariant and (i) is
true, Similarly as in the proof of Proposition 3 one can show that for every
X€(0, 1) there exists k such that f*(x)e P, what proves (i). Note that gof?|,
=f? 09, where g =f|g is the homeomorphism of R onto L. Define the
homeomorphism h: I-R by h(x)=(p,—p)x+p. The mapping f;
=h"1of2.oh with ¢, = h™!(c,) satisfies conditions (2), (4), (5) (Proposition
0 (i) and (ii)), Proposition 3 (iii)). Statements (iv}-(vii) are simple consequences
of hitherto proved (i)iii).
ProrosiTioN 5. Let the point p be the non-attractor and let

) f3e) <p.
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Then there exists an (2n+ 1)-periodic orbit for some n > 1. By [10] there exist
also (2m+ 1)-periodic orbits for m > n.

Proof. It suffices to prove that for some n > 1 holds f2"*!(c) < c. First
note that the condition (7) implies f?(c) < ¢ and hence q, < c, where q, is
the unique 2-periodic point less than p (Lemma 3). In particular f2(x) < x
for ¢ < x < p. Assume now that for every n > 0 holds ¢ < f2"*1(c). Then the
following inequalities hold:

c<f3) <p,
c<f)=f*(*©) <f*(c) <p,
and generally

c<frte) = 2(f""1) <f*" ) <...<p.

The limit g of the sequence |f2" !(c)] exists and satisfies the inequalities
c<q<pand f%(q) =q, what contradicts the uniqueness of g .

We give the main result.

THEOREM. Let y be a 2"-periodic orbit for the fixed integer n. The
following conditions are equivalent:

(i) Every point xel is asymptotically m-periodic with m < 2",

(i) Every point xel is asymptotically 2*-periodic with k < n,

(i) The orbit y is the attractor, it is attracting in I\E,, where
E,='‘xel: x is eventually a 2*-periodic point, k < n) is the countable set,

(iv) For every k < n there exists exactly one 2*-periodic orbit. There are
no other periodic orbits,

(v) One can define the sequence |f,} for k < n, where f,: I -1 satisfy
conditions (2), (4), (5), (6), fo =/, fi+1 =(f); as in Proposition 4 (iii), the
non-zero fixed point p, of f, is attracting in (0, 1).

Proof. For n =0 the theorem follows from Proposition 3. Let n> 1,
and assume that one of the conditions (i}<iv) holds, we denote it by C. BY
Propositions 3 and 5, assumptions of Proposition 4 are satisfied, hence ther¢
is a mapping f;: I — I satisfying the condition C for n—1. From the
inductive assumption f, satisfies all other conditions, and again by
Proposition 4, f satisfies them as well.

6. We consider families of functions similar to the family (3). L€t
f;: I - I be functions of class C3 defined for t from an interval T. The family
if;) has property (B) on T, if:

(8) TxI>a(t, x)—f“(x) is continuous, i =0, 1, 2,

(9) f, satisfies conditions (2), (4), (5), for every te T,
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(10) T ={[1o,t.] and the fixed point p is the attractor for t =t4, f(c) =1
for t=1,, f(c)<1 for t <t,.

We write in many cases f instead of f,, ¢ instead of c,, etc. The family
defined by (3) has the property (B) on [t,, 4], for tye(1, 3].

Let D denote a certain condition imposed on f;. A point s in T is said
to be the minimal parameter (maximal parameter) with respect to D provided
s=inf{re T f satisfies D} (s =sup|teT: f satisfies D}).

Assume that | f;} has property (B) on T. The results of Sections 4 and 5§
allow us to make some remarks about the properties of the family o)

For t close to t, there exists the unique fixed point p which is attracting
in (0, 1). For ¢ = t, point p is the non-attractor because w(c) = {0). Let s, be
the maximal parameter with respect to the condition f’(p)= —1.
Proposition 2 implies that for ¢ close to s, the point p bifurcates in a
2-periodic orbit which is attracting in I\ E, (the definition of E, was given in
the Theorem (iii)). Let T; = [t,, t'] where t, is close enough to s, and ! > t,
is the minimal parameter with respect to the condition f3(c) = p. The family
of functions f,,: I — I defined as f;, = (f); has the property (B) on T,. By
Proposition 4 (i) the interval P is absorbing in (0, 1). In a similar way
families ' fu) exist and have the property (B) on suitable intervals T,
=[t,, "], n=2,3,4,... For teT, close to t, the 2"-periodic orbit is
attracting in I\ E,. For te T, there exists a generalized 2" '-periodic orbit
Which is absorbing in I\E,_,. It is not known (even for the family (3))
Whether the maximal period increases, however it tends to infinity as r tends
to the infimum of (™.

Let r. >+! be the maximal parameter with respect to the condition
)= p. (For the family (3) t' = t, (approx. = 3.6786), see [9]). Proposition
S implies that for 1 > t. there exist periodic orbits with odd periods. These
periods decrease as periodic orbits appear. Proposition 1 implies that there
eXists a couple of (2n+1)-periodic orbits, one being the attractor and the
Other one the non-attractor. We show that this attractor bifurcates into
2(2n+1)-periodic orbits, the next into 4(2n+ 1)-periodic orbits etc. Roughly
Speaking the family ! £2*1) has local property (B). We show that similar
Phenomena occur in the case if f4(c) <p (and f%(c) <f3(c) <c), namely
there appear periodic orbits with periods ..., 10, 8, 6, 4. Similarly “there
appear periodic orbits with periods ..., 11,9, 7,5, ..., 12, 10, 8, 6, etc.

ProrosiTion 6. Let N > 2 and let
(1) f2e)<f3 ) <...<fNe) <c.

Denote by p, the interval [g, g,], where g =pi.. (N—1 times). If
(12) p<SN1(c)
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then Py is absorbing in (0, 1). For xe(0, g) f"(x) > x for all n. If (12) does not
hold, i.e.

(13) M) <p,

then there exists an integer k such that fN*1*2k(c) < ¢, what means that there
exists an (N + 1+ 2k)-periodic orbit o(q) and q <g.

Proof. If conditions (11) and (12) hold, then f(c) < g,, what proves the
first part. The proof of the second part is similar to the proof of
Proposition 5.

The family {f,} has property (LB) on the interval T, if for every te T
there exists a closed interval I, =1 such that the restriction f, is
topologically conjugate with a function g,: I > I and the family {g,} has
property (B) on T.

As an example one can take the family {f>") on the interval
T, n=0,1,2,...

Let N> 2, k >0 be fixed. Put n = N+1+2k. Let {f,} has property (B)
on T Let ty, be the maximal parameter with respect to conditions (11) and
(13), and let f"(c) =c. It is easy to see ([9]) that the function t— ¢, is
continuous. Since f"(c) = 0 for t = t, the number ty, is well-defined. Assume
for a moment that t =ty,. The orbit o(c) is n-periodic and the attractor.
Moreover, o(c) (0, g) = {q}, where g = f%(c). Conditions f"(c) =g, (f") (@)
=0 and f"(g) = p > g imply that there exists a second fixed point g, of f",
q <qo <g. The definition of ty, implies that for ¢ > ty, there are two
n-periodic points g,, g, in the interval (0, g) continuously depending on !
and for t = ty, equal to g and q,, respectively. There is a unique critical
point d, in (q,, qo,) of f;". Let t"* > ty, be the minimal parameter with respect
to the condition f2"(d) =q,, and put Ty, = [ty t¥*]. Proposition 0 (iii)
implies that the family {f"} has the property (LB) on Ty, (set I, = [u,, do]>
where u, is the maximal point with respect to the properties f"(u) = qo, ¥
<qo). Note that 1t <...< T, <Th <Th<...<T3 <Tyy < Tz <.-
< T < Ty < Ty <..f<te (A < B means that for ac A, be B we have a
<b), and lim ty = lim " =1¢,.

N-—ow N—-wo
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