COLLOQUIUM MATHEMATICUM

VOL. XXXI 1974 FASC. 2
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BY

M.J.MACZYNSKI (WARSZAWA)

Let V be a vector space (in general, infinite-dimensional) over D,
where D is one of the following division rings: R (real numbers), C (com-
plex numbers), or @ (quaternions). Let L be a given lattice of subspaces
(linear manifolds) of V. In this paper we consider the problem under
what conditions there exists a D-valued inner product (.,.) on VxV
such that under (.,.) V becomes a Hilbert space over D and L coincides
with the lattice of all closed subspaces of the Hilbert space V. It is clear
that a necessary condition is that L contain all finite-dimensional sub-
spaces of ¥V and admit an orthocomplementation, i.e. a map +: L—L
such that atva =1 (the greatest element of L), a < b implies b+ < a*,
and (a*)' = a. Birkhoff and von Neumann showed in [2] that for a finite-
-dimensional V this condition is essentially sufficient as well. Namely,
they showed that if V is a vector space of dimension n >3 over D = R
or ¢, and ¢ is an orthocomplementation of the lattice of all subspaces
of V, then there exists an inner product (.,.) converting V into a Hilbert
space such that £ coincides with the orthocomplementation induced by
(.,.), and (.,.) is uniquely determined by & up to a multiplicative positive
real number. If D = C, then in order to obtain a Hilbert space in the
above way we must additionally assume that the orthocomplementation
£ is regular in the sense that the anti-automorphism of C associated with
¢ (and uniquely determined by it) is the complex conjugation. A proof
and discussion of the Birkhoff and von Neumann theorem can also be
found in [8] (Theorem 4.7). A generalization of this theorem to the infinite-
-dimensional case was given by Kakutani and Mackey [3]. They showed
that if V is an infinite-dimensional Banach space over D and L is the
lattice of all closed subspaces of V, then for any orthocomplementation
M—~>M*' of L there exists a D-valued inner product {.,.) on V x V such
that ‘(i) under (.,.) V becomes a Hilbert space over D; (ii) the topology
of V induced by the norm associated with (.,.) coincides with its original
topology; (iii) the map M—>M" coincides with the orthocomplementation
induced by (.,.) (for the proof of this theorem see also [8], Theorem 7.1).
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In the present paper we show that a theorem similar to the above
one holds even without the assumption that V is a Banach space. The
proof of this theorem will be based upon a lemma used in the proof of
Kakutani and Mackey’s theorem given by V. S. Varadarajan and a theorem
proved by I. Amemiya and H. Araki (both to be formulated in the sequel,
the latter in connection with [7]). First let us state the lemma.

LeMmaA 1 (Kakutani-Mackey [3], Varadarajan [8], Lemma 7.2).
Let V be a vector space of infinite dimension over D. Let L be a lattice of
subspaces of V such that

(1) L contains all finite-dimensional subspaces of V;

(ii) ¢of M, NeL and at least one of them is finite-dimensional, then
MvN =M-+N.

Suppose that M —M~L is an orthocomplementation in L. Then, for any
non-zero vector woge W, there exist an involutive anti-automorphism 0 of D
and a 0-symmetric 0-bilinear form (.,.) on V X V such that

(1) (woyw,) =1, and

(ii) (#,y) = 0 if and only if ze(D-y)*.

0 and (.,.) are uniquely determined. The form (.,.) is definite, 1. e.
(z,2) =0 if and only if © = 0.

Observe that since M + N is the least subspace of V containing both
M and N, condition (ii) can be replaced by the following: M + Ne L
whenever M, Ne L and at least one of them is finite-dimensional.

As shown in the proof of Lemma 1 given in [8], in case D = R,
60 must be the identity and, in case D = @, § must be the canonical con-
jugation. Hence, in both cases, (.,.) is a positive definite inner product.
To conclude that (.,.) is a positive definite inner product also in the case
where D = C, we must know that 6 is the complex conjugation, whieh
is true if and only if 6 is continuous. Consequently, in case D = C we
additionally assume that the given orthocomplementation is regular
in the sense that the associated anti-automorphism, uniquely determined
by the orthocomplementation, is continuous, and hence is the complex
conjugation. It is interesting that, as shown in the proof of Kakutani and
Mackey’s theorem, in the case where V is a complex Banach space and
L the lattice of all closed subspaces of V any orthocomplementation is
regular.

Before we state our main theorem let us recall that a lattice L with
orthocomplementation * is said to be orthomodular if a < b implies that
there is a ce L such that ¢ | a (i.e. ¢ < a') and ave = b (see [5], p. 132).

THEOREM 1. Let V be an infinile-dimensional vector space over D,
where D is one of the following division rings: R (real numbers), C (complex
numbers), or Q (quaternions). Let L be a lattice of subspaces of V such that

(i) L contains all finite-dimensional subspaces of V;
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(ii) ¢f M, NeL and at least one of them is finite-dimensional, then
M+ NeL; and

(iii) L 48 closed under set intersection, . e. for any family {M,} < L, the
set intersection (\ M, also belongs to L.

Suppose + is an orthocomplementation in L (regular in case D = C)
with respect to which L is an orthomodular lattice. Then there exists a D-
valued immer product (.,.) on VXV such that under (.,.) V is a Hilbert
space over D and L coincides with the lattice of all closed subspaces of the
Hilbert space V. The inner product (.,.) is determined uniquely up to a mul-
tiplicative real mumber.

Note that condition (iii) implies that L is a complete lattice ()M,
is the meet A M, in L, and since de Morgan’s laws hold in an orthocomple-
mented lattice, \/ M, = (M ML)* exists in L).

Proof. Taking into account that in case D = ¢ the orthocomple-
mentation is regular, in view of the discussion preceding the theorem,
we infer from Lemma 1 that there exists a D-valued inner product (.,.)
on.V x V (determined up to a multiplicative real number) such that (z, y)
= 0 if and only if ¢ (D-y)'. Hence V becomes an inner product space.

We show that L coincides with the lattice of all (.,.)-closed subspaces
of V.

Let us recall that a subspace N < V is said to be (.,.)-closed if N
= (N') =N, where N' ={xeV: (x,y) =0 for all ye N}.

Let Me L and let {D-y,} be the set of all one-dimensional subspaces
of V contained in M. We have M = \/(D-y,), where \/ denotes the lattice
join in L (M is the set union of all one-dimensional subspaces contained
in M). By de Morgan’s law we infer that

Mt = AN(D-y)* = N(D-y,)*

(set intersection). Hence xe¢ M' if and only if ze (D-y,)* for all y,e M,
i. e, if and only if (x,y, = 0 for all y,e M. Hence M'’ = (Mt)* = M
i. e. every member of L is (.,.)-closed.

Conversely, let N < V be (.,.)-closed, i.e. N'' = N. We first show
that N'e L. Let {D-y,} be the set of all one-dimensional subspaces of V
contained in N. By (i) we have D-y,¢ L for all a. By the definition of N’
we have ze N’ if and only if (x, y,) = 0 for all y,¢ N, i. e., by Lemma 1,
ze N' if and only if ze (D-y,)* for all a, that is, xe¢ N’ if and only if
ze (N (D-y,)*. Since (iii) holds, we obtain (M) (D-y,)* ¢ L, i. e. N'e L. Since
for Me L we have M’ = M1e L, we conclude that N’ = Ne L. Hence
we have shown that L coincides with the lattice of all (.,.)-closed subspaces
of V, and the orthocomplementation induced by (.,.) coincides with the
original orthocomplementation M —>M+ given in L.
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We shall now apply a theorem proved by Amemiya and Araki [1]
stating that if V is an inner product space (with the inner produect (.,.)),
then the lattice of all (.,.)-closed subspaces of V is orthomodular if and
only if V is complete with respect to the topology induced by the norm
associated with the inner product, that is, if and only if V is a Hilbert
space with respect to (.,.) (proof of this theorem see [5], Theorem 34.9).
In this case it is well known that the lattice of all (.,.)-closed subspaces
of the Hilbert space V coincides with the lattice of all closed subspaces
of V. Since the lattice L of all (.,.)-closed subspaces of V is orthomodular
by assumption, we conclude, by Amemiya and Araki’s theorem, that V
is a Hilbert space with respect to the inner product (.,.) and L coincides
with the lattice of all closed subspaces of V. This completes the proof
of Theorem 1.

It is clear that the converse of Theorem 1 also holds; that is, the lat-
tice of all closed subspaces of every Hilbert space satisfies conditions
(i)- (iii) of Theorem 1 and admits a regular orthocomplementation (namely,
the one induced by the inner product).

We can restate Theorem 1 in another form  without postulating
orthocomplementation and orthomodularity explicitly, but using the
notion of a full set of probability measures.

Let L be a o-complete lattice. We say that a set F' of mappings from
L into the closed interval [0, 1] is a full set of probability measures on L
provided that

1° f(a) < f(b) for all fe F' implies a < b;

2° for each ae L there is a be L such that f(a)+f(b) =1 for all
fe F;

3° for every sequence a,, a,, ... (finite or infinite) satisfying f(a;)+
+f(a;) <1 for ¢ #j and all fe F, we have

flayvagv ...) = f(a,) +f(ag)+ ... for all fe F.

It is easy to show that if a o-complete lattice admits a full set of
probability measures, then it admits an orthocomplementation with
respect to which it is an orthomodular lattice. In fact, observe first that
1° implies that a = b if and only if f(a) = f(b) for all fe F. Consequently,
we can define a map a —a* of L into L by asserting that b = a' if and only
if f(a)+f(b) =1 for all fe F. This map constitutes an orthocomplemen-
tation on L. Namely, f(avat) = f(bvdt) =1 for all a,be L, so that
ava' is the greatest element of L. Since a‘! = a and a < b if and only
if b+ < at, de Morgan’s laws hold in L and a A a* is the least element of L.
To show that L is orthomodular, let a <b. Then, by (iii),

flav(avbt)t) = f(a)+f((avbt)t)
= f(a)+1—(f(a)+1—f(b)) = f(b) for all fe F,
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hence
b=av(avb)t,

which shows that L is orthomodular (see [5], Theorem 29.13).

Let us note that the notion of a full set of probability measures can
be defined and discussed in a more general setting of partially ordered
sets (see, e. g., [6]).

A full set of probability measures is said to be regular if the orthocom-
plementation induced by it is regular.

We have the following theorem:

THEOREM 2. Let V be an infinite-dimensional vector space over D and
let L be a lattice of subspaces of V satisfying conditions (i)- (iii) of Theorem 1.
Then L is the lattice of closed subspaces of a Hilbert space based on V if
and only if L admits a full set of probability measures (regular in case D = C).

Proof. In view of the discussion preceding the theorem, if L admits
a full set of probability measures, then L admits an orthocomplementation
with respect to which it is orthomodular, so that from Theorem 1 it follows
that L is the lattice of all closed subspaces of a Hilbert space. Conversely,
assume that L is the lattice of all closed subspaces of the Hilbert space
V with an inner product (.,.). We are going to show that L admits a full
set of probability measures. Let 8 be the unit sphere of V, and for each
M ¢ L, let P, be the orthogonal projection onto M. For each u ¢ 8, we define
a function f, from L into [0,1] by setting f,(M)= (P, u,u) for all M e L.
It is well known that F = {f,: ue 8} is a full set of probability measures
on L (f(M)+f(N) =1 for all fe F is equivalent to N = ML, and f(M)+
+f(N) < 1 is equivalent to M | N). Thus the proof of Theorem 2 is com-
plete.

Theorem 2 shows that, roughly speaking, the lattice of all closed
subspaces of a Hilbert space can be characterized among other lattices
of subspaces of a vector space by the fact that it admits a full set of prob-
ability measures. Conditions (i)-(iii) are clearly not essential since any
lattice of subspaces can be extended to a lattice satisfying these condi-
tions, whereas the property of admitting a full set of probability measures
cannot, in general, be achieved by extending the underlying lattice (since
the lattice of all subspaces of an infinite-dimensional vector space does
not have this property).
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