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On the equation x"(t) = F(t, x(t))
in the Sobolev space H!(R)

by P1oTR Fuarkowskr (E6dz)

Abstract. The existence of solutions of the nonlinear equation x”(t) = F(¢, x(t)) in the
Sobolev space H'(R) is established.

1. Introduction. We study the existence of solutions of the nonlinear
equation x”(f) = F(t, x(¢)) in the Sobolev space H!(R). We make assumptions
concerning F under which the.function F(-, x(*)) is locally integrable for any
xe H!(R). In this way, we may understand the above equation in the sense of
distributions.

Other assumptions concerning F give an a priori bound for solutions.
Assumptions of this kind may be found in papers [1], [2] concerning equations
on a bounded interval, and in paper [5] treating equations on the half-line.

2. Notation. By H*(R), for integer s > 0, we denote the Sobolev space
{xe L*(R): x“eL*(R), 0<i< s}
normed in the standard way:

3
Ix13 = % Ix@)2,
i=0

where |*| stands for the norm in L2(R).

We denote by Hj,. (H2,(R) = L2.(R)) the local Sobolev space (see for
instance [3]) and treat it as a Fréchet space with the topology defined by the
system of semi-norms

prx)=Y [ [xP@)*dt forn=1,2,...
{=0 —n

We denote by C§F (R) the space of C*-functions on the line with compact
support and by 2'(R) the space of distributions on the line.

3. Existence of solutions of the equation x'(t) = F(t, x(t)).
THEOREM 1. Let F: R? -+ R have the form

(1) F(t, y) = Fy(t, )+ F,(1),
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where F,e L}, (R) and F, is continuous on the set | )iz 1t;, ti+1[ X R and has
continuous extensions to every product [t,, t;.,]x R (i€ Z). Here, {t;: ieZ} is
a division of the line such that t; <t;,,t,— + 0 asi— + o0 and t;— — o0 as
i— —o0.

Suppose that there exist positive constants a, C and a nonnegative function
feL*(R) such that

2) y(F(t, y)—a*y) =0  for [yl =1 ()

almost everywhere with respect to t (a.e. t), and

3) IF(t, | < IF@E 0)+Clyl  for [yl <f(t) ae. t.
Suppose finally that

(4) F(-, 0)e L*(R).
Then the equation

8] x"(t) = F(t, x(1)

has a solution x in H'(R) for which ||x||; € M, where

(6) M= (min(l, @) (IFC, Ol [ S +(C+a®) | £12)2.
The proof is based on several lemmas.

LemMa 1. If xe HY(R) then x is a continuous function tending to 0 at + o
and

7 sup [x(9) < 2712 x|,

teR

Proof. See [3], Corollary 7.9.4. We prove only (7):
x(t) = jx(t ‘(t)dt — j x{t)x'(t) j |x(t)x' (e)ldt

< [l 'l < 2722 + 11x)1%) = 27 X113,
and (7) follows.
Write equation (5) in the form
(8) x"()—a’x(t) = G(t, x(t)),
where G(t, y) = F(t, y)—a*y. Observe that ae. ¢

9) IG(t, Y < [F(t, 0)|+(C+a?) |yl for |yl < f(b).
Let

G(t,y) for ftf<n,
= = 1 ‘e
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LEMMA 2. G, has the following properties:
() If x,— x in H*(R), then
G,(t, %, (t) > G,(t, x(t) as k— o
uniformly outside a set of measure zero.

@ii) If |xll; < N, then
[Gat, X ()] < K+|F,(t)

a.e. t for some constant K = K(N, n).

(iii) G,(*, x(*))e L*(R) for xe H'(R).

Proof. (i) Let x, »x in H'(R) and |x,l;, |x|l; < N. Then (7) implies
%, ()], |x(t)] < 272N for teR. From (1), G—F, is uniformly continuous on
any set of the form J¢;, ;[ x [—27 12N, 2712 N7, because it has a continuous
extension to the compact set [t;, t.,]x[—2"Y2N, 27Y2N]. Then
G,(t, x(t)) = G,(t, x(t)) as k — co, uniformly for t€]t;, t;+ [, since x,(t) — x(t)
uniformly due to (7). From the finiteness of {ie Z: 1¢;, t;+,[n[—n, n] # G}
we get the assertion.

We prove (ii) likewise usmg the boundedness of a continuous function on
a compact set.

(ili) G,(*, x(*)) is measurable and vanishes outside a compact set, thus it
belongs to L*(R) by (ii).

Now, consider the equation
(11) x"(t)—ax(t) = AG,(t, x(t))
with the parameter A€[0, 1], and compute an a priori estimate of the norm of
its solutions:

LeMMA 3. If x = x;,,€ H'(R) is a solution of (11), then |x|, < M, where
M is defined by (6).

Proof. Observe that Lemma 2(iii) implies that xe H*(R). Multiply (11)
by x(t) and integrate over R:
(12) [ x(®)x"(£)de — a® sz(t)dt A x(t)G,(t, x(t))dt.

R R

We integrate by parts the first integral in (12) making use of

x(+ ) = x'(+ o) =0 (Lemma 1), to obtain

I¥+atx1? = ~4] x(0)6,(t, x(0)ds.

Let S = {teR: |x(t)] < f(t)}. Inequalltles (2), (3) and (9) imply
min(l, a?) x| < [x[*+a? | x|?
= —A[x t)G,(t, x(O)dt—A | x(£)G,(t, x(£))dt

R\S

Hx(t (¢, x(r)ldt < jf(t (IF(t, 0)| +(C+a?) f(1))dt
< IIfII(IIF( , 0)||+(C+az) 1£1).

We have used the Schwarz inequality in the last step.
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Simple calculations finish the proof.
Inverting the operator x— x" —a®x, we see that in H'(R) equation (11) is
equivalent to

(13) x = Ad,x,
where
(14) (4,%)() = —Qa)~? j e =5 G(s, x(s))ds.
We have K
(15) (4y ()= 27 | sga(t=5)e” 16, x(s)ds,
(16), (A,%)" (@) = G,(t, x(t)—2"'a j e~ =51G(s, x(s))ds.

-n
An important step in the proof of Theorem 1 is:

LEMMA 4. The embedding H%,(R) — H}.(R) is continuous and transforms
bounded sets into precompact ones.

The proof is in [3], Theorem 10.1.27.

LEMMA 5. The operator A,: H*(R)— H'(R) defined by (14) is continuous
and transforms bounded sets into precompact ones.

Proof. The continuity of 4, can be obtained from Lemma 2(i), (14) and
(15).

Take a bounded sequence (x,), k=1, 2,..., in H*(R). Lemma 2(ii) and
(14)-(16) imply the boundedness of the sequence (4,x,), k =1, 2, ..., in H*(R),
hence also in H},,(R). Using Lemma 5, we take a subsequence (4, x, ) which is
convergent to some y in HL.(R).

Let yeCF(R), yi(t)=1 for te[—n, n]. We have

(17) I A%~y >0 as 1 co.
Observe that

(18) (4,%) (t) = "4, %) (—n)  for t < —n,

(19) (A,%,) (1) = "4, x, ) (n) for t > n.

Notice that convergence in H{,,(R) implies pointwise convergence (Lemma
1), hence

(20) y(t) = e""*y(—n) for t< —n,
(21) y(t) = e~ y(n) for t > n,
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Now, it is easy to see that (17)-(21) imply that 4,x, —y in H'(R).
Lemma 5 is proved.

LEMMA 6. The equation
(22) x"(t)—a’x(t) = G, (¢, x(t))
has a solution in H'(R).

Proof. Equation (22), considered in H'(R), is equivalent to (13) for A = 1.
Write (13) in the form

(I—-44,)x =0,

where I stands for the identity mapping. We treat ] —14, as a mapping from
the ball B(0, M +¢) = H*(R) into H'(R) (M is defined by (6)) and use the
Leray—Schauder degree theory (see, for instance, [4]), since A, is compact due
to Lemma 5. From Lemma 3, we know that (I —A4,)x # O for | x|, = M +e¢, s0
the Leray-Schauder degree

deg(I—A,, B(0, M+e), 0) =deg(I, B(O, M+¢g), 0)=1#0.

Therefore, equation (22) has a solution in H'(R).

Consider the sequence (x,), n=1, 2,..., of solutions of equation (22).
Lemma 3 implies that (x,) is bounded in H'(R), and, by Lemma 2(ii), (10) and
(22), (x,) is bounded in HZ (R).

Using Lemma 4, we choose a subsequence (x,) which is convergent to
some x in Hj,(R). But: |x, |, <M, so xe H'(R) and |x|, < M.

We shall prove that x is a solution of (8). We have ¢x, — ¢x in H*(R) for
any @€ Cg(R). Therefore, Lemma 2(i) and (10) imply that

(23) G(:, %, () > G(, x()) in Z'(R).
The convergence x, — x in Hj,(R) implies that

(24) X, =X in 2'(R),

hence

(25) X! »x" in 9'(R).

(23)+25) imply that x is a solution of (8).
The proof of Theorem 1 is complete.

THEOREM 2. For any solution x of (5) in H*(R), we have | x|, < M, where
M is defined by (6).

Proof. Let x be a solution of (5) in H*(R). For n =1, 2, ..., X|j—pn is
a solution of (22) on [ —n, n]. Extending x|; -, ) by (14), we get a solution x, of
(22) on the line. Since |x,[; < M (Lemma 3), we have ||x||, < M.
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