On the equation x''(t) = F(t, x(t))in the Sobolev space $H^1(R)$

by Piotr Fijalkowski (Łódź)

Abstract. The existence of solutions of the nonlinear equation x''(t) = F(t, x(t)) in the Sobolev space $H^1(\mathbf{R})$ is established.

1. Introduction. We study the existence of solutions of the nonlinear equation x''(t) = F(t, x(t)) in the Sobolev space $H^1(\mathbf{R})$. We make assumptions concerning F under which the function $F(\cdot, x(\cdot))$ is locally integrable for any $x \in H^1(\mathbf{R})$. In this way, we may understand the above equation in the sense of distributions.

Other assumptions concerning F give an a priori bound for solutions. Assumptions of this kind may be found in papers [1], [2] concerning equations on a bounded interval, and in paper [5] treating equations on the half-line.

2. Notation. By $H^s(R)$, for integer $s \ge 0$, we denote the Sobolev space

$$\{x \in L^2(\mathbf{R}): x^{(i)} \in L^2(\mathbf{R}), 0 \le i \le s\}$$

normed in the standard way:

$$||x||_s^2 = \sum_{i=0}^s ||x^{(i)}||^2,$$

where $\|\cdot\|$ stands for the norm in $L^2(\mathbf{R})$.

We denote by H_{loc}^s ($H_{loc}^0(R) = L_{loc}^2(R)$) the local Sobolev space (see for instance [3]) and treat it as a Fréchet space with the topology defined by the system of semi-norms

$$p_n^2(x) = \sum_{i=0}^s \int_{-n}^n |x^{(i)}(t)|^2 dt$$
 for $n = 1, 2, ...$

We denote by $C_0^{\infty}(R)$ the space of C^{∞} -functions on the line with compact support and by $\mathcal{D}'(R)$ the space of distributions on the line.

3. Existence of solutions of the equation x''(t) = F(t, x(t)).

THEOREM 1. Let $F: \mathbb{R}^2 \to \mathbb{R}$ have the form

(1)
$$F(t, y) = F_1(t, y) + F_2(t),$$

where $F_2 \in L^2_{loc}(\mathbb{R})$ and F_1 is continuous on the set $\bigcup_{i \in \mathbb{Z}}]t_i$, $t_{i+1}[\times \mathbb{R}] = \mathbb{R}$ and has continuous extensions to every product $[t_i, t_{i+1}] \times \mathbb{R}$ $(i \in \mathbb{Z})$. Here, $\{t_i : i \in \mathbb{Z}\}$ is a division of the line such that $t_i < t_{i+1}, t_i \to +\infty$ as $i \to +\infty$ and $t_i \to -\infty$ as $i \to -\infty$.

Suppose that there exist positive constants a, C and a nonnegative function $f \in L^2(\mathbf{R})$ such that

(2)
$$y(F(t, y)-a^2y) \geqslant 0 \quad \text{for } |y| \geqslant f(t)$$

almost everywhere with respect to t (a.e. t), and

(3)
$$|F(t, y)| \le |F(t, 0)| + C|y|$$
 for $|y| \le f(t)$ a.e. t.

Suppose finally that

$$(4) F(\cdot, 0) \in L^2(\mathbf{R}).$$

Then the equation

$$(5) x''(t) = F(t, x(t))$$

has a solution x in $H^1(\mathbf{R})$ for which $||x||_1 \leq M$, where

(6)
$$M = (\min(1, a))^{-1} (\|F(\cdot, 0)\| \|f\| + (C + a^2) \|f\|^2)^{1/2}.$$

The proof is based on several lemmas.

LEMMA 1. If $x \in H^1(\mathbf{R})$ then x is a continuous function tending to 0 at $\pm \infty$ and

(7)
$$\sup_{t \in \mathbb{R}} |x(t)| \leq 2^{-1/2} ||x||_1.$$

Proof. See [3], Corollary 7.9.4. We prove only (7):

$$x^{2}(t) = \int_{-\infty}^{t} x(t)x'(t)dt - \int_{t}^{+\infty} x(t)x'(t)dt \le \int_{-\infty}^{+\infty} |x(t)x'(t)|dt$$
$$\le ||x|| ||x'|| \le 2^{-1}(||x||^{2} + ||x'||^{2}) = 2^{-1}||x||_{1}^{2},$$

and (7) follows.

Write equation (5) in the form

(8)
$$x''(t) - a^2 x(t) = G(t, x(t)),$$

where $G(t, y) = F(t, y) - a^2 y$. Observe that a.e. t

(9)
$$|G(t, y)| \le |F(t, 0)| + (C + a^2)|y|$$
 for $|y| \le f(t)$.

Let

(10)
$$G_n(t, y) = \begin{cases} G(t, y) & \text{for } |t| \leq n, \\ 0 & \text{for } |t| > n, \end{cases} \quad n = 1, 2, ...$$

LEMMA 2. G_n has the following properties:

(i) If $x_k \to x$ in $H^1(\mathbb{R})$, then

$$G_n(t, x_k(t)) \to G_n(t, x(t))$$
 as $k \to \infty$

uniformly outside a set of measure zero.

(ii) If $||x||_1 \leq N$, then

$$|G_n(t, x(t))| \leq K + |F_2(t)|$$

a.e. t for some constant K = K(N, n).

(iii)
$$G_n(\cdot, x(\cdot)) \in L^2(\mathbf{R})$$
 for $x \in H^1(\mathbf{R})$.

Proof. (i) Let $x_k \to x$ in $H^1(R)$ and $||x_k||_1$, $||x||_1 \le N$. Then (7) implies $|x_k(t)|$, $|x(t)| \le 2^{-1/2}N$ for $t \in R$. From (1), $G - F_2$ is uniformly continuous on any set of the form $]t_i$, $t_{i+1}[\times [-2^{-1/2}N, 2^{-1/2}N]]$, because it has a continuous extension to the compact set $[t_i, t_{i+1}] \times [-2^{-1/2}N, 2^{-1/2}N]$. Then $G_n(t, x_k(t)) \to G_n(t, x(t))$ as $k \to \infty$, uniformly for $t \in]t_i$, $t_{i+1}[$, since $x_k(t) \to x(t)$ uniformly due to (7). From the finiteness of $\{i \in Z:]t_i, t_{i+1}[\cap [-n, n] \neq \emptyset\}$ we get the assertion.

We prove (ii) likewise using the boundedness of a continuous function on a compact set.

(iii) $G_n(\cdot, x(\cdot))$ is measurable and vanishes outside a compact set, thus it belongs to $L^2(\mathbf{R})$ by (ii).

Now, consider the equation

(11)
$$x''(t) - a^2 x(t) = \lambda G_n(t, x(t))$$

with the parameter $\lambda \in [0, 1]$, and compute an a priori estimate of the norm of its solutions:

LEMMA 3. If $x = x_{\lambda,n} \in H^1(\mathbb{R})$ is a solution of (11), then $||x||_1 \leq M$, where M is defined by (6).

Proof. Observe that Lemma 2(iii) implies that $x \in H^2(\mathbb{R})$. Multiply (11) by x(t) and integrate over \mathbb{R} :

(12)
$$\int_{\mathbf{R}} x(t)x''(t)dt - a^2 \int_{\mathbf{R}} x^2(t)dt = \lambda \int_{\mathbf{R}} x(t)G_n(t, x(t))dt.$$

We integrate by parts the first integral in (12) making use of $x(\pm \infty) = x'(\pm \infty) = 0$ (Lemma 1), to obtain

$$||x'||^2 + a^2 ||x||^2 = -\lambda \int_{\mathbf{R}} x(t) G_n(t, x(t)) dt.$$

Let $S = \{t \in \mathbb{R}: |x(t)| \le f(t)\}$. Inequalities (2), (3) and (9) imply

$$\min(1, a^{2}) \|x\|_{1}^{2} \leq \|x'\|^{2} + a^{2} \|x\|^{2}$$

$$= -\lambda \int_{S} x(t) G_{n}(t, x(t)) dt - \lambda \int_{R \setminus S} x(t) G_{n}(t, x(t)) dt$$

$$\leq \int_{S} |x(t) G_{n}(t, x(t))| dt \leq \int_{R} f(t) (|F(t, 0)| + (C + a^{2}) f(t)) dt$$

$$\leq \|f\| (\|F(\cdot, 0)\| + (C + a^{2}) \|f\|).$$

We have used the Schwarz inequality in the last step.

Simple calculations finish the proof.

Inverting the operator $x \mapsto x'' - a^2x$, we see that in $H^1(\mathbf{R})$ equation (11) is equivalent to

$$(13) x = \lambda A_n x,$$

where

(14)
$$(A_n x)(t) = -(2a)^{-1} \int_{-\pi}^{\pi} e^{-a|t-s|} G(s, x(s)) ds.$$

We have

(15)
$$(A_n x)'(t) = 2^{-1} \int_{-\pi}^{\pi} \operatorname{sgn}(t-s) e^{-a|t-s|} G(s, x(s)) ds,$$

(16)
$$(A_n x)''(t) = G_n(t, x(t)) - 2^{-1} a \int_{-\pi}^{\pi} e^{-a|t-s|} G(s, x(s)) ds.$$

An important step in the proof of Theorem 1 is:

LEMMA 4. The embedding $H^2_{loc}(\mathbf{R}) \to H^1_{loc}(\mathbf{R})$ is continuous and transforms bounded sets into precompact ones.

The proof is in [3], Theorem 10.1.27.

LEMMA 5. The operator $A_n: H^1(\mathbb{R}) \to H^1(\mathbb{R})$ defined by (14) is continuous and transforms bounded sets into precompact ones.

Proof. The continuity of A_n can be obtained from Lemma 2(i), (14) and (15).

Take a bounded sequence (x_k) , k = 1, 2, ..., in $H^1(R)$. Lemma 2(ii) and (14)-(16) imply the boundedness of the sequence $(A_n x_k)$, k = 1, 2, ..., in $H^2(R)$, hence also in $H^2_{loc}(R)$. Using Lemma 5, we take a subsequence $(A_n x_{k_l})$ which is convergent to some y in $H^1_{loc}(R)$.

Let $\psi \in C_0^{\infty}(\mathbf{R})$, $\psi(t) = 1$ for $t \in [-n, n]$. We have

(17)
$$\|\psi A_n x_{k_l} - \psi y\|_1 \to 0 \quad \text{as } l \to \infty.$$

Observe that

(18)
$$(A_n x_{k_i})(t) = e^{a(n+t)} (A_n x_{k_i})(-n) \quad \text{for } t \leq -n,$$

(19)
$$(A_n x_{k_l})(t) = e^{a(n-t)} (A_n x_{k_l})(n) \qquad \text{for } t \ge n.$$

Notice that convergence in $H^1_{loc}(\mathbb{R})$ implies pointwise convergence (Lemma 1), hence

(20)
$$y(t) = e^{a(n+t)}y(-n) \quad \text{for } t \leqslant -n,$$

(21)
$$y(t) = e^{a(n-t)}y(n) \quad \text{for } t \ge n.$$

Now, it is easy to see that (17)-(21) imply that $A_n x_{k_i} \to y$ in $H^1(\mathbb{R})$. Lemma 5 is proved.

LEMMA 6. The equation

(22)
$$x''(t) - a^2 x(t) = G_n(t, x(t))$$

has a solution in $H^1(R)$.

Proof. Equation (22), considered in $H^1(\mathbf{R})$, is equivalent to (13) for $\lambda = 1$. Write (13) in the form

$$(I - \lambda A_n)x = 0$$

where I stands for the identity mapping. We treat $I - \lambda A_n$ as a mapping from the ball $B(0, M + \varepsilon) \subset H^1(R)$ into $H^1(R)$ (M is defined by (6)) and use the Leray-Schauder degree theory (see, for instance, [4]), since A_n is compact due to Lemma 5. From Lemma 3, we know that $(I - \lambda A_n)x \neq 0$ for $||x||_1 = M + \varepsilon$, so the Leray-Schauder degree

$$\deg(I-A_n, B(0, M+\varepsilon), 0) = \deg(I, B(0, M+\varepsilon), 0) = 1 \neq 0.$$

Therefore, equation (22) has a solution in $H^1(\mathbf{R})$.

Consider the sequence (x_n) , n = 1, 2, ..., of solutions of equation (22). Lemma 3 implies that (x_n) is bounded in $H^1(\mathbf{R})$, and, by Lemma 2(ii), (10) and (22), (x_n) is bounded in $H^2_{loc}(\mathbf{R})$.

Using Lemma 4, we choose a subsequence (x_{n_i}) which is convergent to some x in $H^1_{loc}(R)$. But $||x_{n_i}||_1 \leq M$, so $x \in H^1(R)$ and $||x||_1 \leq M$.

We shall prove that x is a solution of (8). We have $\varphi x_{n_1} \to \varphi x$ in $H^1(\mathbb{R})$ for any $\varphi \in C_0^{\infty}(\mathbb{R})$. Therefore, Lemma 2(i) and (10) imply that

(23)
$$G(\cdot, x_{n_l}(\cdot)) \to G(\cdot, x(\cdot)) \quad \text{in } \mathscr{D}'(R).$$

The convergence $x_{n_1} \to x$ in $H^1_{loc}(\mathbb{R})$ implies that

(24)
$$x_{n_1} \to x \quad \text{in } \mathscr{D}'(R),$$

hence

$$(25) x_{n_l}^{"} \to x^{"} in \mathscr{D}'(\mathbf{R}).$$

(23)–(25) imply that x is a solution of (8). The proof of Theorem 1 is complete.

THEOREM 2. For any solution x of (5) in $H^1(\mathbb{R})$, we have $||x||_1 \leq M$, where M is defined by (6).

Proof. Let x be a solution of (5) in $H^1(\mathbb{R})$. For $n = 1, 2, ..., x|_{[-n,n]}$ is a solution of (22) on [-n, n]. Extending $x|_{[-n,n]}$ by (14), we get a solution x_n of (22) on the line. Since $||x_n||_1 \le M$ (Lemma 3), we have $||x||_1 \le M$.

References

- [1] S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. École Norm. Sup. 29 (1912), 431-485.
- [2] A. Granas, R. Guenther and J. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1985).
- [3] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin 1983.
- [4] N. G. Lloyd, Degree Theory, Cambridge Univ. Press, 1978.
- [5] B. Przeradzki, On a two-point boundary value problem for differential equations on the half-line, Ann. Polon. Math. 50 (1989), 53-61.

INSTYTUT MATEMATYKI, UNIWERSYTET ŁÓDZKI INSTITUTE OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ Banacha 22, 90-238 Łódź, Poland

Reçu par la Rédaction le 21.11.1988