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On a functional equation related to the Cauchy equation

by Pl. KANNAPPAN (Waterloo, Canada) and M. KuczmMA (Katowice)

Abstract. Equation (4) is considered for functions f: X —R, where (X, +) is a com-
mutative group and (R, +,-) is a commutative integral domain with identity and
of characteristic zero. a, be B are constants. The general solution of (4) is described
and, in particular, the problem of the equivalence of equations (4) and (1) is inves-
tigated.

Introduction. The following Cauchy equation

(1) flz+y) = flz)+f(y)

has been studied extensively (cf. [1], [4]). The equivalence of (1) with
the functional equation

(2) fz+y)? = [f(x)+f(y)

was investigated in [3], [5], [6], [7], [8]. Recently, the second author
jointly with others [2] has studied the equivalence of (1) with the functional
equation

(3) fle+y)[f(@+y)—fle)—f(y)] = 0.
In this paper, along the same lines, we treat the functional equation
(4) [f(x+y)—af (@) = bf(y)]1[f (= +y)—f(=)—f(y)] = 0,

which contains (2) and (3) as particular cases. We shall show that, in some
cases, there exist solutions of (4) which are not solutions of (1).

1. Let (X, +) be a commutative group and (R, +, ) a commutative
integral domain with identity and of characteristic zero. Let f: X =R be
a solution of (4).

First we note that if f is a constant, say f(#) = ¢, then (a +b—1)¢? = 0,
showing thereby that either ¢ = 0 (in which case f is a solution of (1))
or a+b =1. In the latter case every constant function satisfies (4).
Thus in the sequel we may consider only the non-constant solutions of (4).

We prepare our final result by a sequence of lemmas.

LEMMA 1. If f is a non-constant solution of (4), then the set

(5) K = {ze X : f(x) = 0}
i8 a subgroup of X.

4 — Annales Polonici Mathematici 30.1



50 Pl Kannappan and M. Kueczma

Proof. For x,ye¢ K it is evident from (4) that f(x+ y)? = 0 so that
z+ye K.

Now we will show that f(0) = 0.

With 2 =y =0 (4) gives (1—a—1b)f(0)2 = 0. If we had f(0) # 0,
then a+b = 1.

Now putting y = 0 in (4), (4) yields b(f(2)—f(0))f(0) = 0. Since
f is non-constant and f(0) # 0, we must have b = 0. On setting ¢z = ¢
in (4), we obtain (f(y)—s(0))f(0) = 0, yielding f(y) = constant, since
f(0) # 0, which is a contradiction. Consequently f(0) = 0.

Take an arbitrary o« K and put ¥ = — in (4). Then bf(—)? = 0.
Next, replace y by 2 and £ by —z in (4) to get af( —=)? = 0. Then either
—xz ¢ K, showing thereby that K is a subgroup, or ¢« = b = 0 in which
case (4) reduces to (3) and K is a subgroup as it has been shown in [2].
This completes the proof.

LEMMA 2. If f i8 a mon-constant solution of (4), then either f is odd,
or a = —b and f satisfies (3).

Proof. Suppose that f is not odd. Then there is an z,¢ X such that
f(—z) # —f(x,). So, by Lemma 1, z,¢ K and —2,¢ K. From (4), on first
setting ¢ = x,, ¥y = —,, and then z = —x,, ¥y = ,, we have af(z,) +
+bf(—=2,) = 0 and af(—x,)+bf(x,) = 0. Hence ‘

(a+b)[f(—a) +f(@)] = 0,
yielding a = —b.
Interchanging « and ¥ in (4) we obtain

(6) [f(z+y)—bf(2) —af W) ][f(z+y)—f(z)—f(y)] = 0.
Adding (4) and (6), since a = —b, we get
(7 2f(z+yn)fe+y)—fl@)—f(y)] =0,

which implies (3). The proof of Lemma 2 is thus complete.
LeMMA 3. Suppose that a mon-constant solution f of (4) fulfils the
condition

(8) f(@) #fly) implies f(x+y) = f(z)+f(y).
Then (with K given by (b)), either

(i) f 18 odd, K is of indexr 3, a+b+1 =0, and f is given by

0 for xe K,
(9) flz) = ¢ for zexy+ K,
—¢  for xe —zy+ K,

where xy¢ K and ¢ # 0 is an arbilrary constant in R; or

(ii) f 48 odd, K is of infinite index and f satisfies (1); or
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(iii) f is not odd, K is of index 2, a = '—b, and f is given by

0 for ze K,

(10) fl@) = ¢ for a¢E,

where ¢ # 0 18 an arbitrary constant in R.

Proof. First we note that if f is odd (1), then the sets {ze X : f(x)
= const} are the cosets of K. In fact, take x, y¢ X such that f(z) = f(y)
# 0. (For z,ye K the. relation #—ye¢ K results from Lemma 1.) Then
f(—=y) = —fly) = —f(x) #f(2), and by (8) f(z—y) = f(#)—f(y) =0,
that is, z —ye K. ‘

Now we shall consider two cases.

I. First, let f be not odd. Then, by Lemma 2, a = —b and f satisfies
(3). As has been proved in [2], (3) implies that either f is a solution of (1),
which is impossible since f is not odd, or the index of K is 2 and f is given
by formula (10). Thus in this case we obtain (iii) above.

I1I. Now let f be odd. First we shall show that the index of K cannot
be two. Supposing the contrary, take an arbitrary «,¢ K. Then also —z,¢ K,
and hence both z,, —z, belong to the same coset, z,+ K. This means
that f(z,) = f(—=,) = —f(x,), that is, f(z,) = 0 and so zye K, a contra-
diction. So the index of K > 3.

Let the index of K be 3. Then f is given by (9). Since all groups of
order 3 are isomorphic, ¢ 2,+ K implies 2xe¢ —x,+ K. Hence (4) with
x =Yy =z, yields
(11) (a+b+1)3¢2 =0,
giving a+b-+1 = 0. Thus in this case we obtain (i) above.

We will now prove that if the index of K > 3, then f satisfies (1)
and the index of K should be infinite.

By (8) relation (1) holds whenever f(z) # f(y). If f(z) = f(y) = 0,

then (1) holds by virtue of Lemma 1. So let f(z) = f(y) # 0. Then there
is a we X such that f(u) is neither 0, nor f(z), nor f(—z) = —f(x). Hence

f(—u) #f(x) = f(y) and by (8)
flute) =fu)+f(z) and fly—u) = fly)—f(w).

Hence

(12) flu+a) # fly—wu),
and again by (8),

fla+y) =fl@+uty—u) =f@)+f@).
Thus f satisfies (1) for all z, ye X.

() If f is not odd, this is also true (cf. (10)), but we shall not need this hero
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Since f is not constant, there exists an z,¢ X such that f(x,) = ¢ 0.
By (1), for every integer k, there exists a coset on which the value of fis ke.
Since R is of characteristic zero, all these values are different, which means
that the index of K is infinite. Thus in this case we obtain (ii) above and
the proof of Lemma 3 is complete.

Now we will prove the following theorem which is the main result
of the present paper.

THEOREM 1. Let (X, +) be a commutative group and (R, +, -) be an
integral domain of characteristic zero. Further let f: X >R be a solution
of (4). Then the set (5) (if non-empty) is a subgroup of X and we have the
following four possibilities:

(i) a+b =1, K =0, and f i8 constant;

(ii) a+b = 0, K is of index 2, and f is given by (10);

(iii) a+b = —1, K s of index 3, and f is given by (9);

(iv) a, b are arbitrary, f is a solution of (1) and the index of K 1is either 1
(in which case f(x) = 0) or infinite.

Proof. If f is constant, then we have either (i) or the case f(z) = 0 of
(iv), as it has been observed in the beginning of the paper. So let us assume
that f is non-constant.

We must consider a few cases.

I. First, we will treat the case a # b. Interchanging # and % in (4)
we get (6). Subtracting (6) from (4) we obtain

(b—a)[f(#)—fWIf(@+y)—fl@#)—f(y)] =0,

;vh_ich implies (8). Now the theorem results from Lemma 3.

II. Next, we take the case a = b = 0. Then (4) reduces to (3) and the
theorem follows from the results in [2]. '

ITI. Next, let @ = b = 1. Then (4) yields immediately (1), that is,
we obtain case (iv) above.

IV. Now, let a = b = —1. Then (4) reduces to (2), which in turn
implies (1) (cf. [3], [5], [6], [7], [8]). Thus again we obtain case (iv) above.

V. Finally, we consider a = b # 0, +1, —1. By Lemma 2 f is odd.
We will prove that (8) holds in this case, too.

Take f(z,) # f(y,) and suppose that f(z,+ %) # f(%)+f(¥). Then
by (4) results,

(13) F(@o+ o) = al[f(2o) +1(¥0)]-

Since f is odd, we get by (4) either

(14) f(@y) = f(@+Yo—Yo) = a[f(Zo+ Yo) —F(¥)]
or

(15) F(@) = f(®+Yo—Yo) = f(@o+Yo) —F(¥o)-
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Relation (15) implies immediately f(z,+¥,) = f(@,) +f(¥,), contrary to
the supposition. Thus we must have (14). But (14) and (13) yield, since
a #1,

(16) a[f(@) +f(¥)] = —f ().
Similarly we arrive at
(17) alf(@)+f(¥)] = —Sf(%)-

Now (16) and (17) show that f(z,) = f(y,), which is a contradiction. Thus
(8) is true also in this case and the theorem results again from Lemma 3.
This completes the proof of the theorem.

2. Now we shall discuss some examples.

1. Let X = R = Z, where Z is the set of integers with the usual
addition and multiplication. Then, by Theorem 1, any solution f: Z —~Z
of equation (4) has one of the following forms (here ¢ # 0 is an integer):

@ fin) = ¢
(possible. if and only if a+b = 1);

. 0 for m even,
) I = lc for » odd
(possfble if and only if a+b = 0);

(iii) f(n) = ¢ forn=3k+1, where k=0, +1, £2,..

I 0 for n = 3k,

—C. fOl"n=3k+2’
(possible if and only if a4+b = —1);
(iv) f(n) = en

(possible in all cases). The last formula results from (1), cf. [1].
2. Let (X, +) = (¥, *), where E = {e,, ¢, €,, €5} and

10 —-10 1 0 -1 0
30=017 €, = 01l 62=0_1, €3 = o —1/)’

and let (B, +, -) be the field of real numbers. Thus (1) and (4) become
(18) fzy) = f(2)+f(y),

and

(19) [f (2y) — af (z) — bf (9)1[f (2y) — f(2) —f(y)] = 0,
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respectively. Then, by Theorem 1, if f: E—~R is a solution of (19), then
either f satisfies (18) and hence f(z) =0, or a+b =1 and f(z) =e¢ # 0,

or a = —b and f has one of the following forms (cf. [2]):
@) = |O for z = ¢, ¢,,
¢ for z =e,, e
f@) = ‘0 for = ¢, €,
¢ for x = e, e;
fla) = {0 for ¢ = e,, €3,
¢ for z =eg,e,.

3. Let X = R be the field of real numbers. Then (X, +) = (B, +)
has no subgroups of finite index and, by Theorem 1, if f : R—R is a solution
of equation (4), then either f satisfies the Cauchy equation (1), ora+b =1
and f is constant.

3. From Theorem 1 we see that there may exist solutions f of (4)
which do not satisfy (1). This can be avoided by assuming some weak
regularity conditions. For this purpose we make use of the following result
proved in [2].

LEMMA 4. Let (X, +) be a topological group. If A, B « X are second
category Baire sets, then the set A+ B ={r =a+b:aecA,be B} has
a non-void inlerior.

THEOREM 2. Let (X, +) be a second category commutative topological
group, and let (R, +,-) be an integral domain of characteristic zero.
Further, let

(20) UnV =X,

: n=1
for every neighbourhood V of 0 in X. If f: X—R is a solution of (4) such
that (b) is a non-empty Baire set, then f is a solution of (1).

Proof. Case 1. Let K be of second category. Since K is a subgroup
of X (Lemma 1), K + K < K. But, by Lemma 4, K + K contains a non-
empty open set and so K must contain a neighbourhood V of 0. Since K
is a subgroup, nV < K for all n, whence by (20) KX = X. This means that
f is identically zero and in particular satisfies (1).

Case 2. Let K be of first category. By Theorem 1 either f satisfies
(1), or K is of index 2 or 3. If the index of K is 2, then X = KU (z,+ K)
with an #,¢ K, that is, X is of first category contrary to the assumption.
Similarly, if the index of K is 3, then X = KU(z,+ K)U(—x,+ K) and
again X is of first category, which is impossible. Thus we are left with the
case that f is a solution of (1), which was to be proved.
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Remark. Some remark is in order regarding the characteristic of
the integral domain E. Lemma 1 is true for any characteristic of B. In
order for Lemma 2 to be valid, the characteristic of R should be different
from 2 (cf. (7)). In Lemma 3, first we note that the characteristic of R is
to be different from 2 and 3 (ef. (11) and (12)); then assuming the character-
istic of R to be p (> 3), we see that case I is valid and as for case II, we
have that f satisfies (1) and for x,¢ X such that f(z,) = ¢ # 0, and for
every integer k, there is a coset on which f takes value ke¢. Since R is of
characteristic p, kc’s are different for 0 < ¥ < p—1. Thus, we conclude
that the index of K is either infinite or > p (a multiple of (p — 1) plus one).
So, Lemma 3 will be true for the characteristic of R to be p (> 3), when (ii)
of Lemma 2 is replaced by (ii), f is odd, K is either of index infinite or
of index > p (a multiple of (p —1) plus one) and f satisfies (1).

Now, if we assume the characteristic of R to be p (> 3), then

(a) Theorem 1 is valid, when' (iv) is replaced by (iv)’. a, b arbitrary,
fis a solution of (1) and the index of K is either 1 or infinite or > p (a mul-
tiple of (p —1) plus one);

(b) Theorem 2 is valid without change.
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