On a functional equation related to the Cauchy equation

by Pl. Kannappan (Waterloo, Canada) and M. Kuczma (Katowice)

Abstract. Equation (4) is considered for functions $f: X \to R$, where (X, +) is a commutative group and $(R, +, \cdot)$ is a commutative integral domain with identity and of characteristic zero. $a, b \in R$ are constants. The general solution of (4) is described and, in particular, the problem of the equivalence of equations (4) and (1) is investigated.

Introduction. The following Cauchy equation

$$(1) f(x+y) = f(x) + f(y)$$

has been studied extensively (cf. [1], [4]). The equivalence of (1) with the functional equation

(2)
$$f(x+y)^2 = [f(x)+f(y)]^2$$

was investigated in [3], [5], [6], [7], [8]. Recently, the second author jointly with others [2] has studied the equivalence of (1) with the functional equation

(3)
$$f(x+y)[f(x+y)-f(x)-f(y)] = 0.$$

In this paper, along the same lines, we treat the functional equation

$$(4) [f(x+y) - af(x) - bf(y)][f(x+y) - f(x) - f(y)] = 0,$$

which contains (2) and (3) as particular cases. We shall show that, in some cases, there exist solutions of (4) which are not solutions of (1).

1. Let (X, +) be a commutative group and $(R, +, \cdot)$ a commutative integral domain with identity and of characteristic zero. Let $f: X \rightarrow R$ be a solution of (4).

First we note that if f is a constant, say f(x) = c, then $(a+b-1)c^2 = 0$, showing thereby that either c = 0 (in which case f is a solution of (1)) or a+b=1. In the latter case every constant function satisfies (4). Thus in the sequel we may consider only the non-constant solutions of (4).

We prepare our final result by a sequence of lemmas.

LEMMA 1. If f is a non-constant solution of (4), then the set

(5)
$$K = \{x \in X : f(x) = 0\}$$

is a subgroup of X.

4 - Annales Polonici Mathematici 30.1

Proof. For $x, y \in K$ it is evident from (4) that $f(x+y)^2 = 0$ so that $x+y \in K$.

Now we will show that f(0) = 0.

With x = y = 0 (4) gives $(1-a-b)f(0)^2 = 0$. If we had $f(0) \neq 0$, then a+b=1.

Now putting y = 0 in (4), (4) yields b(f(x) - f(0))f(0) = 0. Since f is non-constant and $f(0) \neq 0$, we must have b = 0. On setting x = 0 in (4), we obtain (f(y) - f(0))f(0) = 0, yielding f(y) = constant, since $f(0) \neq 0$, which is a contradiction. Consequently f(0) = 0.

Take an arbitrary $x \in K$ and put y = -x in (4). Then $bf(-x)^2 = 0$. Next, replace y by x and x by -x in (4) to get $af(-x)^2 = 0$. Then either $-x \in K$, showing thereby that K is a subgroup, or a = b = 0 in which case (4) reduces to (3) and K is a subgroup as it has been shown in [2]. This completes the proof.

LEMMA 2. If f is a non-constant solution of (4), then either f is odd, or a = -b and f satisfies (3).

Proof. Suppose that f is not odd. Then there is an $x_0 \in X$ such that $f(-x_0) \neq -f(x_0)$. So, by Lemma 1, $x_0 \notin K$ and $-x_0 \notin K$. From (4), on first setting $x = x_0$, $y = -x_0$, and then $x = -x_0$, $y = x_0$, we have $af(x_0) + bf(-x_0) = 0$ and $af(-x_0) + bf(x_0) = 0$. Hence

$$(a+b)[f(-x_0)+f(x_0)] = 0,$$

yielding a = -b.

Interchanging x and y in (4) we obtain

(6)
$$[f(x+y)-bf(x)-af(y)][f(x+y)-f(x)-f(y)] = 0.$$

Adding (4) and (6), since a = -b, we get

(7)
$$2f(x+y)[f(x+y)-f(x)-f(y)] = 0,$$

which implies (3). The proof of Lemma 2 is thus complete.

LEMMA 3. Suppose that a non-constant solution f of (4) fulfils the condition

(8)
$$f(x) \neq f(y) \quad implies \ f(x+y) = f(x) + f(y).$$

Then (with K given by (5)), either

(i) f is odd, K is of index 3, a+b+1=0, and f is given by

(9)
$$f(x) = \begin{cases} 0 & \text{for } x \in K, \\ c & \text{for } x \in x_0 + K, \\ -c & \text{for } x \in -x_0 + K, \end{cases}$$

where $x_0 \notin K$ and $c \neq 0$ is an arbitrary constant in R; or

(ii) f is odd, K is of infinite index and f satisfies (1); or

(iii) f is not odd, K is of index 2, a = -b, and f is given by

(10)
$$f(x) = \begin{cases} 0 & \text{for } x \in K, \\ c & \text{for } x \notin K, \end{cases}$$

where $c \neq 0$ is an arbitrary constant in R.

Proof. First we note that if f is odd (1), then the sets $\{x \in X : f(x) = \text{const}\}$ are the cosets of K. In fact, take $x, y \in X$ such that $f(x) = f(y) \neq 0$. (For $x, y \in K$ the relation $x - y \in K$ results from Lemma 1.) Then $f(-y) = -f(y) = -f(x) \neq f(x)$, and by (8) f(x-y) = f(x) - f(y) = 0, that is, $x - y \in K$.

Now we shall consider two cases.

I. First, let f be not odd. Then, by Lemma 2, a = -b and f satisfies (3). As has been proved in [2], (3) implies that either f is a solution of (1), which is impossible since f is not odd, or the index of K is 2 and f is given by formula (10). Thus in this case we obtain (iii) above.

II. Now let f be odd. First we shall show that the index of K cannot be two. Supposing the contrary, take an arbitrary $x_0 \notin K$. Then also $-x_0 \notin K$, and hence both x_0 , $-x_0$ belong to the same coset, $x_0 + K$. This means that $f(x_0) = f(-x_0) = -f(x_0)$, that is, $f(x_0) = 0$ and so $x_0 \in K$, a contradiction. So the index of $K \ge 3$.

Let the index of K be 3. Then f is given by (9). Since all groups of order 3 are isomorphic, $x \in x_0 + K$ implies $2x \in -x_0 + K$. Hence (4) with $x = y = x_0$ yields

$$(11) (a+b+1)3c^2 = 0,$$

giving a+b+1=0. Thus in this case we obtain (i) above.

We will now prove that if the index of K > 3, then f satisfies (1) and the index of K should be infinite.

By (8) relation (1) holds whenever $f(x) \neq f(y)$. If f(x) = f(y) = 0, then (1) holds by virtue of Lemma 1. So let $f(x) = f(y) \neq 0$. Then there is a $u \in X$ such that f(u) is neither 0, nor f(x), nor f(-x) = -f(x). Hence $f(-u) \neq f(x) = f(y)$ and by (8)

$$f(u+x) = f(u) + f(x)$$
 and $f(y-u) = f(y) - f(u)$.

Hence

$$(12) f(u+x) \neq f(y-u),$$

and again by (8),

$$f(x+y) = f(x+u+y-u) = f(x)+f(y).$$

Thus f satisfies (1) for all $x, y \in X$.

⁽¹⁾ If f is not odd, this is also true (cf. (10)), but we shall not need this hero

Since f is not constant, there exists an $x_0 \in X$ such that $f(x_0) = c \neq 0$. By (1), for every integer k, there exists a coset on which the value of f is kc. Since R is of characteristic zero, all these values are different, which means that the index of K is infinite. Thus in this case we obtain (ii) above and the proof of Lemma 3 is complete.

Now we will prove the following theorem which is the main result of the present paper.

THEOREM 1. Let (X, +) be a commutative group and $(R, +, \cdot)$ be an integral domain of characteristic zero. Further let $f: X \to R$ be a solution of (4). Then the set (5) (if non-empty) is a subgroup of X and we have the following four possibilities:

- (i) a+b=1, $K=\emptyset$, and f is constant;
- (ii) a+b=0, K is of index 2, and f is given by (10);
- (iii) a+b=-1, K is of index 3, and f is given by (9);
- (iv) a, b are arbitrary, f is a solution of (1) and the index of K is either 1 (in which case $f(x) \equiv 0$) or infinite.

Proof. If f is constant, then we have either (i) or the case $f(x) \equiv 0$ of (iv), as it has been observed in the beginning of the paper. So let us assume that f is non-constant.

We must consider a few cases.

I. First, we will treat the case $a \neq b$. Interchanging x and y in (4) we get (6). Subtracting (6) from (4) we obtain

$$(b-a)\lceil f(x)-f(y)\rceil\lceil f(x+y)-f(x)-f(y)\rceil=0,$$

which implies (8). Now the theorem results from Lemma 3.

- II. Next, we take the case a = b = 0. Then (4) reduces to (3) and the theorem follows from the results in [2].
- III. Next, let a = b = 1. Then (4) yields immediately (1), that is, we obtain case (iv) above.
- IV. Now, let a = b = -1. Then (4) reduces to (2), which in turn implies (1) (cf. [3], [6], [6], [7], [8]). Thus again we obtain case (iv) above.
- V. Finally, we consider $a = b \neq 0, +1, -1$. By Lemma 2 f is odd. We will prove that (8) holds in this case, too.

Take $f(x_0) \neq f(y_0)$ and suppose that $f(x_0 + y_0) \neq f(x_0) + f(y_0)$. Then by (4) results,

(13)
$$f(x_0 + y_0) = a[f(x_0) + f(y_0)].$$

Since f is odd, we get by (4) either

$$(14) f(x_0) = f(x_0 + y_0 - y_0) = a[f(x_0 + y_0) - f(y_0)]$$

OI.

$$(15) f(x_0) = f(x_0 + y_0 - y_0) = f(x_0 + y_0) - f(y_0).$$

Relation (15) implies immediately $f(x_0 + y_0) = f(x_0) + f(y_0)$, contrary to the supposition. Thus we must have (14). But (14) and (13) yield, since $a \neq 1$,

(16)
$$a[f(x_0) + f(y_0)] = -f(x_0).$$

Similarly we arrive at

(17)
$$a[f(x_0) + f(y_0)] = -f(y_0).$$

Now (16) and (17) show that $f(x_0) = f(y_0)$, which is a contradiction. Thus (8) is true also in this case and the theorem results again from Lemma 3. This completes the proof of the theorem.

- 2. Now we shall discuss some examples.
- 1. Let X = R = Z, where Z is the set of integers with the usual addition and multiplication. Then, by Theorem 1, any solution $f: \mathbb{Z} \to \mathbb{Z}$ of equation (4) has one of the following forms (here $c \neq 0$ is an integer):

$$f(n) = c$$

(possible if and only if a+b=1);

(ii)
$$f(n) = \begin{cases} 0 & \text{for } n \text{ even,} \\ c & \text{for } n \text{ odd} \end{cases}$$

(possible if and only if a+b=0);

(iii)
$$f(n) = \left\{ egin{array}{ll} 0 & ext{for } n = 3k, \ c & ext{for } n = 3k+1, \ -c & ext{for } n = 3k+2, \end{array}
ight.$$
 where $k = 0, \, \pm 1, \, \pm 2, \ldots$

(possible if and only if a+b=-1);

$$(iv) f(n) = cn$$

(possible in all cases). The last formula results from (1), cf. [1].

2. Let
$$(X, +) = (E, \cdot)$$
, where $E = \{e_0, e_1, e_2, e_3\}$ and

$$e_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad e_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e_3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

and let $(R, +, \cdot)$ be the field of real numbers. Thus (1) and (4) become

(18)
$$f(xy) = f(x) + f(y),$$

and

$$[f(xy) - af(x) - bf(y)][f(xy) - f(x) - f(y)] = 0,$$

respectively. Then, by Theorem 1, if $f: E \to R$ is a solution of (19), then either f satisfies (18) and hence $f(x) \equiv 0$, or a+b=1 and $f(x) \equiv c \neq 0$, or a=-b and f has one of the following forms (cf. [2]):

$$f(x) = egin{cases} 0 & ext{for } x = e_0, e_1, \\ c & ext{for } x = e_2, e_3; \\ f(x) = egin{cases} 0 & ext{for } x = e_0, e_2, \\ c & ext{for } x = e_1, e_3; \\ f(x) = egin{cases} 0 & ext{for } x = e_0, e_3, \\ c & ext{for } x = e_1, e_2. \end{cases}$$

- 3. Let X = R be the field of real numbers. Then (X, +) = (R, +) has no subgroups of finite index and, by Theorem 1, if $f: R \rightarrow R$ is a solution of equation (4), then either f satisfies the Cauchy equation (1), or a+b=1 and f is constant.
- 3. From Theorem 1 we see that there may exist solutions f of (4) which do not satisfy (1). This can be avoided by assuming some weak regularity conditions. For this purpose we make use of the following result proved in [2].

LEMMA 4. Let (X, +) be a topological group. If $A, B \subset X$ are second category Baire sets, then the set $A + B = \{x = a + b : a \in A, b \in B\}$ has a non-void interior.

THEOREM 2. Let (X, +) be a second category commutative topological group, and let $(R, +, \cdot)$ be an integral domain of characteristic zero. Further, let

$$(20) \qquad \qquad \bigcup_{n=1}^{\infty} nV = X,$$

for every neighbourhood V of 0 in X. If $f: X \rightarrow R$ is a solution of (4) such that (5) is a non-empty Baire set, then f is a solution of (1).

Proof. Case 1. Let K be of second category. Since K is a subgroup of X (Lemma 1), $K+K \subset K$. But, by Lemma 4, K+K contains a non-empty open set and so K must contain a neighbourhood V of 0. Since K is a subgroup, $nV \subset K$ for all n, whence by (20) K = X. This means that f is identically zero and in particular satisfies (1).

Case 2. Let K be of first category. By Theorem 1 either f satisfies (1), or K is of index 2 or 3. If the index of K is 2, then $X = K \cup (x_0 + K)$ with an $x_0 \notin K$, that is, X is of first category contrary to the assumption. Similarly, if the index of K is 3, then $X = K \cup (x_0 + K) \cup (-x_0 + K)$ and again X is of first category, which is impossible. Thus we are left with the case that f is a solution of (1), which was to be proved.

Remark. Some remark is in order regarding the characteristic of the integral domain R. Lemma 1 is true for any characteristic of R. In order for Lemma 2 to be valid, the characteristic of R should be different from 2 (cf. (7)). In Lemma 3, first we note that the characteristic of R is to be different from 2 and 3 (cf. (11) and (12)); then assuming the characteristic of R to be p > 3, we see that case I is valid and as for case Π , we have that f satisfies (1) and for $x_0 \in X$ such that $f(x_0) = c \neq 0$, and for every integer k, there is a coset on which f takes value kc. Since R is of characteristic p, kc's are different for $0 \leq k \leq p-1$. Thus, we conclude that the index of K is either infinite or $k \neq 0$ (a multiple of $k \neq 0$), when (ii) of Lemma 3 will be true for the characteristic of $k \neq 0$ to be $k \neq 0$. When (iii) of Lemma 2 is replaced by (ii)', $k \neq 0$ fix odd, $k \neq 0$ is either of index infinite or of index $k \neq 0$ (a multiple of $k \neq 0$) plus one) and $k \neq 0$ as a satisfies (1).

Now, if we assume the characteristic of R to be $p \ (> 3)$, then

- (a) Theorem 1 is valid, when (iv) is replaced by (iv)'. a, b arbitrary, f is a solution of (1) and the index of K is either 1 or infinite or $\geq p$ (a multiple of (p-1) plus one);
 - (b) Theorem 2 is valid without change.

References

- [1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York 1966.
- [2] L. Dubikajtis, C. Ferens, R. Ger and M. Kuczma, On Mikusinski's functional equation, Ann. Polon. Math. 28 (1973), p. 39-47.
- [3] P. Fischer and Gy Muszély, On some new generalizations of the functional equation of Cauchy, Canadian Math. Bull. 10 (1967), p. 197-205.
- [4] M. Kuczma, A survey of the theory of functional equations, Publ. Elektrotehn. Fakulteta Univ. u Beogradu, No 130, Beograd 1964.
- [5] H. Światak, On the equation $f(x+y)^2 = [f(x)+f(y)]^2$, Publ. of the Techn. Univ., Miskole 30 (1969), p. 307-308.
- [6] and M. Hosszú, Remarks on the functional equation e(x, y)f(xy) = f(x) + f(y), ibidem 30 (1970), p. 323-325.
- [7] E. Vincze, Beitrag zur Theorie der Cauchyschen Funktionalgleichungen, Arch. Math. 15 (1964), p. 132-135.
- [8] Über eine Verallgemeinerung der Cauchyschen Funktionalgleichung, Funkcial. Ekvac. 6 (1964), p. 55-62.

Reçu par la Rédaction le 7. 7. 1972