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THE GROUP OF INVERTIBLE ELEMENTS
IN A BANACH ALGEBRA

BY

VERN PAULSEN (LAWRENCE, KANSAS)

Let A be a unital complex Banach algebra, G(A) its group of inver-
tible elements, G¢(A) the connected component of the identity in G(A),
and L(4) = G(4)/Gy(A) the quotient group. We give a simple construc-
tion which shows that L(A) can be any finite abelian group.

In [2] Lorch proved that, in a commutative (complex) Banach al-
gebra A, L(A) has either infinitely many elements or only one. In [4]
an example was given of a non-commutative Banach algebra A for which
L(A) was cyclic of order 2. Yuen’s example relies on the rather deep fact
that there are precisely two homotopy classes of maps from the 4-sphere
to the 3-sphere, which makes it difficult to see exactly why the non-trivial
element of L(A) is of finite order. The purpose of this note is to exhibit
for every m a Banach algebra A, (actually a C*-algebra) such that L(4,)
is cyeclic of order n. Although the existence of such algebras can be de-
duced from the homotopy theory of topological spaces, for the examples
we construct the components of L(A,) are determined by a winding
number (mod n), which we feel makes the reasons for their finite order
more accessible. A consequence of our construction is that any finitely
generated abelian group is L(A) for some Banach algebra A. We begin
by recalling a few elementary facts about the group of invertible elements
in Banach algebras and C*-algebras.

If A is a unital Banach algebra, G(A) the group of invertible elements
in A, and Gy(4) the connected component of the identity, then G,(A)
is a normal subgroup of G(A4) and is path connected (this follows since
G,(A) is generated algebraically by exp(4)) (see [5], Section 7). Thus, two
elements of G(A) are identified in the quotient group L(4) = G(4)/Gy(A)
if and only if they belong to the same path component. If A is
a unital C*-algebra [1], then we let U(A) denote the group of unitary
elements in 4, and U,(A) the connected component of the identity in
U(4). Using the polar decomposition of elements in G(A), one shows
easily that Uy(4) = U(A)nGy(4A), U,y(4) is path connected, and the
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inclusion of U(A)/U,(A) into G(4)/G,(A) is a group isomorphism. Thus,
two elements in U(A) define the same element in U(4)/U,(4) if and only
if they are in the same path component, and we may unambiguously set
U(A)/Uy(4) = L(4A).

Let M, denote the C*-algebra of m xn complex matrices, U, the
n X n unitaries, and 1, the n X » identity matrix. Let I denote the closed
unit interval and set

SM, = {f: I - M, |f is continuous, f(0) = al,, f(1) = f1,,
for a, f complex}.

If we define algebraic operations pointwise in SM, and set

Ifil = suplif (@I,
tel

then we obtain a (*-algebra (the unreduced suspension of M,).
THEOREM. L(SM,) is the cyclic group of order m.
Proof. Given fe U(SM,), let

f(0) = exp(iv)-1, and f(1) = exp(iy)-1,,

where # and y are real numbers. Set
g(t) = exp(iz(t—1)—iyt)-1,.

Then, clearly, g € Uy(SM,) and f-¢(0) = f-g(1) =1,. Thus, if we
take the subgroup of U(SM,),

U, ={feUSM,) | f(0) =f(1) =1,},

then, by the above, U,/Uy(8M,)n U, is isomorphic to L(SM,) via the
inclusion of U, into U(SM,). Hence, to prove the Theorem it is sufficient
to construct a homomorphism ¢ from U, to Z,, the cyclic group of order
n, which is onto and such that ker¢ = U,n Uy(SM,).

Let 8! denote the unit circle, w(-) the winding number of a continuous
function from 8! to §', and det(:) the determinant of a matrix. If f e U,,
then f can be regarded as a function from §' to U, (which we shall fre-
quently do), and thus detf is a function from 8' to §'. We set

¢(f) = w(detf) (mod n).
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This defines a homomorphism since det(-) is multiplicative and w(-)
is additive. Furthermore, for the diagonal function

exp (2mikt)
1

9k () = 1 ) ’
1
we have p(g,) = w(exp(2nikt)) =k (modn), and so ¢ is onto Z,.

Now we show that kerg = U,n Uy(SM,), i.e., ¢(f) =0 (modn) if
and only if f can be connected by a path in U(SM,) to the constant func-
tion 1,. The set of equivalence classes of elements of U, which can be
connected by paths in U,, i.e., which are homotopic, is #,(U,) which is
isomorphic to the integers (by Theorem 25.2 in [3]). If f and g can be path
connected in U,, then detf and detg are homotopic maps into 8!, and so
w(detf) = w(detg). Thus, for a homotopy class of maps [f] € »,(U,) we
may set 0([f]) = w(detf) and this is well defined. Furthermore, recalling
the operation in x,(U,), one sees that 0 is a homomorphism. But 6([g,])
= k, and so 6 is onto, and hence an isomorphism. Thus, we see that two
functions f and g in U, can be connected by a path in U, if and only if
w(detf) = w(detg). (This conclusion is actually contained in the proof of
Theorem 25.2 in [3].)

Now, suppose ¢(f) = 0 (modn); then w(detf) = nk for some k. Thus,
there is a path in U, from f to g(f) = exp(2nikt)-1,, and setting g, (?)
= g((1—7)t) defines a path through U(SM,) to the constant function 1,,..
Hence fe U,nUy(SM,).

Conversely, suppose f can be connected by a path in U(SM,) to 1,
i.e., there exists a continuous function F: I xI — U, such that F(t, 0)
= f(¢), F(t,1) = 1,, and F(0,r) and F (1, r) are scalar unitaries for all r.
Notice that F restricted to the boundary of I x I defines a function from

S to U, and is homotopically trivial (restrict F to the boundary of
[r,1—7r]x[r,1—r] for the homotopy). Thus,

0 = w(detFlyy,z)) = w(detf)+w(detF (1, r))+w(detl,)+w(det F(0, 7)),

and since F (1, r), ¥(0, r), and 1, are all scalar valued, the last three terms
are divisible by n. Hence w(detf) =0 (modn) and f e kerp. This com-
pletes the proof of the Theorem.

If A and B are unital Banach algebras, then L(A@® B) can be readily
seen to be isomorphic to L(A4)x L(B). Furthermore, if 4 = ¢ (8'), the
continuous functions on 8, then L(A4) is isomorphic to Z. Thus, any fi-
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nitely generated abelian group can be realized as L(A), where A is a finite
direct sum of the algebras C(8') and SM, .

Some slightly more general results can be obtained by considering
infinite direct sums and direct limits, but the above algebras do not appear
to be sufficiently flexible to allow one to obtain any abelian group. We do
not know whether or not every abelian group can be L(A) for some Banach
algebra A. (P 1266)

In [4] an example is also given of a Banach algebra for which L(A)
is non-abelian, but it relies on very non-trivial topological facts. It would be
interesting to know if somewhat more elementary examples can be con-
structed which yield some of the finite non-abelian groups.
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