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APPROXIMATION OF ELLIPTIC INTEGRALS OF THE THIRD KIND
FOR LARGE VALUES OF ARGUMENT AND MODULUS

1. Introductory remarks. Elliptic integrals of the third kind appear
N many technical applications, e.g. in problems of carrying capacity of
ey.linders subject to combined loadings [9], and in problems of opti-
Mization of cylindrical shells with respect to their stability [11]. They
also appear in such a classical problem as bending of slightly curved
Tods subject to normal pressure [6].

Approximation and tabulation of these integrals, which can De
Teduced to the function

P

(1) Y dv____
#s s F) ;f(l—l—nsinztp)l/l—kzsinzy;’

'S 2 much more difficult problem than approximation and tabulation of
'Dtegrals of the first and second kind, since = is a function of three varia-

les. A certain computational algorithm using repeated Landen’s transfor-
Mations was proposed by Fettis [3] and extended by Neuman [7] to the

Particular case » = — k% However, function (1) shows singularities
a . . . . . .

;l‘)ng the line ¢ = n/2, k = 1 (similarly to the integral of the first kind),
Wthermore along the line ¢ ==n/2, n = —1 and on the surface n =

~1/sin%p. These singularities bring additional complications both to the
“halysis of behsaviour of the function and to the computational methods.
The purpose of the present paper is to derive approximation formulae
T (g, n, k) in domains closc to the above-mentioned singularities and
0 describe analytically thc behaviour of that function in the vicinity
gfth@ s‘ngularitics. In particular, we investigate the regions of argument ¢
QIUSVG %0 /2, of modulus k close to 1 and, additionally, for the parameter n
) (_)S(" %0 —1. Attempts of derivation of formulae of this type initiated
’3 Hamel [5] were cxtensively continued by Radon [8]. The authoress [8]
c}‘;‘i ‘gin*n seviral cxpansions into power series with respect to variously
closb(n argunzents. We arc intercsted only in series for the argument ¢
in se FO /2 and simultancously for the modulus % close to 1, and hence
€ries (19), (20), (21) [8] whose arguments are

B =V1—k, &=*k+n, ¢=7V1—ksin’p—-cosg,
respectiVely,



264

J. Kruzelecki and M. Zyczkowski

The practical limitations of applicability of series (19) and (20) given
by Radon can generally be characterized as follows: any increase of argu-
ment must cause a relevant increase of modulus. Additional limitations
for negative n cause further decrease of the admissible region. However,
the domain of convergence of series (20) does not depend on the value
of argument and in the plane (%k*, ») has the shape of a parallelogram.

To illustrate the complicated limitation forms, the domains of conver-
gence for two chosen values of argument ¢ = 85° (Fig. 1) and ¢ = 80°
(Fig. 2) are shown in Figs. 1 and 2. In both figures the axes are broken
in order to show more precisely the domains we are interested in.
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Series (19) and (20) do not describe the singularity = — oo which

().Ccurs on the surface n = —1/sin?p and which results in an essential
limitation of their applicability. For n - —1 the domains of convergence
deerea,se so that for » = —1 the value of the integral can be given only
for the modulus % = 1.
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i Figs. 1 and 2 show that the neighbourhood of the plane » = —1
pr

auc_iiica,lly not described by Radon’s series. The purpose of the present

Paper is to propose approximation formulae valid in this domain.

. 2. Suggested approximation formulae. The idea of deriving the

ierPOSed formulae which approximate elliptic integrals of the third kind
based on introducing such a small parameter ¢ to the integral that

8
Zastosow, Matem. 16.2
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certain elements of the integrand could be neglected. This operation allows
us to integrate effectively a simplified function and to obtain, in this way,
an approximate solution.

The definition of the elliptic integral in Jacobi’s form is applied here,
namely

v

dx
2 sy k) =
@ 7 E) f 1 +na V(1 —a) (1— Pa)

(substitution # = sing leads to the integral in Legendre’s form (1)).
For further considerations it is more convenient to introduce into (2)
the new variable = V1 — k?s?. Then we have

1

3) "= f dw
14+ (n/E*)A— uz)]l/(k2 —1+4?)(1—u?) )

Vi—i2y?

From now on we use the quantities k' = V1 — & (complementary
modulus) and y' = V1 —y2% Within the range we are interested in, they
are small and are expressed by a small parameter in which we include
furthermore (in one of the cases under consideration) the expression 1+ %.

A relatively large range can be described by introducing a small para-
meter ¢ defined by the formulae

k' =ecosa -
(4) ’ & = -'/kr2+y12 .

y' = gsina,
Substituting (4) into (3) we obtain

1

du

(5) T = —
o [1+ T sroosig 1 uz)] V(1 — u?) (u® — e2cosa)

where 2z = V1 —¢2sin%acos?a.

Since integral (5) contains a singularity, we use here a method anal-
ogical to that applied in [10] for integrals of the first kind, namely, Wé
split integral (B) into a sum of two integrals over appropriate intervals:

Ve du
® a=f _ +
[1+ _ (1—u2)] V(1 —u?) (u? — e cos’ a)

1—¢2cos%a

+f[ " '

Ves 1— uz]l/(l u?) (u? — e2cos2a)

1 —e2¢o8%a
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. Substitution = ¢ wcos « into the first integral in (6) and v = Vi—g
Into the second one allows us to analyze small quantities (and their
appropriate neglecting):

(7

VzlVscosa d
w

z/cosa [1+ - (1_szcoszawz)]V(l—szcoszawz)(wz—l)
1 —e2cos2a .

V1—ez

+/ ;

° (” T—s*cos’a fz) V(1= 8)(1— &—etcosta)

as

From now on we denote the first integral of (7) by I and the second
One by 17. ,

In view of the form of the integrals [4] two cases, n > 0 and n <0,
Should be considered separately ; the second one will be subject to further
Subdivigion.

A.n>0.

i The integral I, after appropriate neglecting small quantities, is of
he following form and the result of integration yields the right-hand
Side of this relation:

VezlVecosa
(8) I~ dw
slobsa 1+mn) Vw:—1
4
1 l/l—szsinzacosza—l—l/l/l—ezsinzacosza—-scosza
1+n l/;(l/l—szsin%cos‘-‘a—l—si.na Vl-—sﬂcos%)

The integral I1 may be approximated by

Vi—ez

a¢

(9) N
e of (1— &%) (1+né?)

1 [ 1+l/1—8l/1—828m200082a n
2(1+mn) 1—1/1—81/1—szsin2acosza

+2Vnare tg (I/ﬁl/l —&/1 — g2sin%acosta )] .

ang The sum of (8) and (9), after neglecting small quantities of order &*
ing after substitution of (4), furnishes an approximate value of the elliptic
°8ral of the third kind:
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(10) w(Y,n, k) == 1+n X
4_7012 2 krz 1 2 k’2 _ —727-2-
X {ln [Vy +_§l/y + +Vnarctg [ﬁ(l — l/y_+ )]}
y'+l/y,2+k'2 2

Substituting # = 0 into (10) we obtain an approximate value of the
elliptic integral of the first kind for large values of argument and modulus.

B. —1<n<0.

In this case, neglecting the same quantities as for n > 0 in the inte-
grand of the integral I leads to results of poor accuracy and for n — —1
the boundary value would be erroneous. Namely, we would have disre-
garded certain expressions with respect to quantities of the same order
(e2wcos2a with respect to 1+#) and then the integral I for n = —1
would be equal to oo independently of the values of argument and modulus.

It has been decided here to consider the integrand more precisely.
The expression which occurs in the square brackets of formula (7), after
transformations and permissible omissions, takes the form

- — 2 2 2\ ~ —_— 2 2 2 __
1+ 1 —sfcor’a (1 —¢2cos?aw?) ~ 1 +n—ne2costa(w?—1),
and the integral after neglecting the quantity s2cos2aw appearing under
the root is as follows:

VzlYacosa dw
(11) I~—

gfcos —_—
—ne2cosla

26082 f : -
ne2cosla o [ 1+n +w=—1]l/w2—1

The form of the solution of integral (11) depends on the value 7,
therefore different results of integration for two subranges are the fol-

lowing:
for
1 <n<o0
1+e2costa
we have
1
(12) Iz X
2V (1 +n)[% (L + s2cos2a) +1]
4 —
l/l/l — g2co82as8in%a —ecos2a -+ l/ ntl V1 — e2cos2asin®a
In n (1 + e%*cos?a) +1
4 -——
l/l/l—ezcoszasinza—scosza —]/ ntl V1 — &2 cos®asina
n(1-+e2cos2a)+1
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Vl—s2cos’asma—]/ n+1 V1 —e?gintacosta
i n(1l+e2cosa)-1 .
b
V1 —e2costasina + ]/ mtl V1 — e%gin%acosa
n(1 -+ e2cosa)+1
for
1
—-l<ns ———F———
1+ e2c0s82a
We have
V — (1 +n)[n(1+e2cos2a) +1]
x(arct l/ n+1 V1 — e2sin%acosta
€ —[n(1l+&*cos’a)+1] sinaV1— e2costa
4
—-arctg]/ n+1 V1 — e?sin®acosta )
—[n(1+¢e*cos’a)+11 y//1 _ e2sin®acosta — ecosta

In the limit case
1
14 e2cos82a ’

formulae (12) and (13) lead to the same results. In this case the form of

Pe integral I7 is the same as for n > 0 but in view of negative » the solu-
bion is different:

n = —

(14) 717 ~ 1 x
2(1+n)

XIn (1 +V1 —a]/l—ezsinzacosza) (1 —VaV1-e/1 —ezsinzacosza)'/—_"
— —)
(l—l/l—sl/l—e2sin2acos2a )(1 —H/—'M/l—81/1—82sin2acosza)‘/_n
—-1<n<0.

_ Neglecting, like previously, small quantities of order &2 and substi-
ting (4) we obtain the formulae for the integral of the third kind (for
= —1 an appropriate limiting procedure should be applied; the result
Used in formula (16)). Since the expression s?cos?a appears in the upper
clound of variability of #, formula (12) after permissible neglections in-
“'udes the whole range of the considered n» and the left boundary of this

;th?rVal requires a strong inequality. Formula (16) holds only for the
it cage 5 — —1. '

is
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Thus for —1 < n < 0 we have

1 161k Vi XE) (L— (Vo %7)/4) N
2(1+mn) (¥ +52) (L+y' Vy*? + B2

(15) =(y,m, k) =~

N V—mn , 1—V —n+(V—n2Vy?+ >
n

2(1-+n) 1+l/—n(1—(l/y'2—l—k'2)/2) ’

and for n = —1 we obtain

() 3,4
16 4 —1,k) =~ ,( —1)——{1-— _—.
(16) (¥, ’ e Y l/y'2+k'2

4

’

C. n< —1.

The considerations are limited here to the values of » slightly smaller
than —1; this limitation is motivated by the fact that for n = —1/sin%¢
the integral increases infinitely.

The definitions of k' and y’ are left without change whereas another
small quantity n’ = —(1+n) is introduced. A new small parameter ¢
denoted by the same symbol as before (its definition is changed) de-
scribes those quantities as follows:

k' = ecosacosg,
amn Yy’ = ecosasing, e =VE?+y2+n'.
n' = g2sinaq,

Introducing equations (17) into integral (3) and splitting it into
a sum of two integrals (I +1I) we obtain

(18)
Vevoges du
o ML [1— 1+ etsinta (1—uz)]l/(l—u2)(u2—ezc<;s2asin2ﬂ) ’
1 —¢%cos?acos?f
+ fl : au :
Vevoosa [1 — 1 —18_21_02?2]::;;2;? 1— uz)]l/(l —u?%) (w2 — e2cos?asin?f)

where v = l/1~szcos2acos2ﬁsin2ﬂ.

The substitution of 4 = swcosacosp into the first integral of (18)
leads to a more convenient form of the integrand and, furthermore, to an
easier analysis of small quantities. The second integral is left without
change. Thus we have
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Vv/cos BV e cosa
1
19y 71— f X

14 £2sin%a
v/cos B 11— 1—¢g2 2qcos2Bw?
[ 1 —g2cos2acos?f (1 —¢*cos*a A )]

dw
Viwz—1)(1 — e2cos2acosfw?) '
The expression in the square brackets of integral (19), after transfor-
Mations and permissible neglections, takes the form
1+ e%sin2a
1 —e&2cos2acos?f

1—

(1 — e2cos2acos?Bw?)

~ e2[(w? —1)cos?acos?f —sinZa],
and the integral, after neglecting s2w?cos2acos?f, is determined by

Vv/cos BV scos a
20) 1o L o :
T g2 2 2 in 2
g2costacos?f oles 8 wi—1 — sin%a Vo —1
cos2acos?f

In the integral II there are different permissible neglections trans-
forming it to the form
1

) = f WY1 — ut .

Yevcosa

As a result of integration I and II we obtain an approximate value
of the integral of the third kind

) . _ Lt
2e?sinza A

Il

= 4
4 ‘/l/l — £2c08%a cos? fsin? f — scos?feos?a — V1 —e2costacos?fsin?f sina

4
In 4 l/'/1 —&2cos2acos?Bsin?f — ecos2fcosia -+ V1 — e2cos?acos?fsin?fsina

- 4
4 '/l/l —e2cos82acos?Bsin?f — cos?f — V1—e2 cos?acos?fsin2fsina

4
4 l/l/l — £2¢0s2a.cos?Bsin®f —cos2f 4 V1 — s2cos?acos?fsin®fsina

V1—ecosaV1— e2cos2acos2fsin?g

2zcosalVl— e2cos2acos2fsin®g

1+V1—ccosaV1— e*cos?acos? Bsin?f

’
1—V1_ccosaV1— e2cos%acos?fsin?f

L1
4
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where A = Vecos?acos?f +sinZa. After permissible neglections of small
quantities of order 2 and after introduction of (17), expression (22) takes
the following form:

1

(23) =w(y,m, k) =~ X
o Vo' (B2 + n')
; T E?+n' k'
><1n K4y VK +y"
— % . gp—
[l/k2+n' (1——_72—_.,_;)—!-1/%']1/?/2—%'
2VE? 4y

T LaT
2VE?+y? 4 VET+ye |

The expression y’'2—mn’ which occurs in the denominator of the loga-
rithm in (23) should not be negative, whence n > —2 442 This limita-
tion can be transformed (for large values of the argument) to the pre-
viously discussed one for » > —1/sin%¢.

Formulae (10), (15), (16), and (23) give a complete set describing
the singular behaviour of the integral of the third kind within the whole
interval —1/y2< n << oo. The accuracy of those formulae increases when
argument and modulus increase.

Assuming that the maximal value neglected is constant and equals
e? =V = const for formulae (10), (15), and (16) we obtain a relation
between k' and ' simultaneously limiting their values:

(24) Eipy?< V.
For n < —1, limitation (24) may be replaced by
(25) K 4y +n' < V,

combining three parameters.

Limitations (24) and (25) show that an increase of the argument ¥
causes an increase of the interval of the admissible modulus ¥ and con-
versely.

Figs. 1 and 2, for V = 0.04, present the domains of applicability of
the given formulae. The boundaries of the domains are marked off by
diagonal lines.

3. Example. As an illustration of the accuracy of the formulae pro-
posed, a numerical example is given. Values of the argument y = 0.996190
(p = 85°) and of the modulus %* = 0.99 are chosen in such a way that the
value of the integral can directly be taken from the tables [1].
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The computation for » = —1.001 was done by using a transforma-

tion formula from [2], p. 13, since the tabulated values are given only for
~1<<n< +100.

The results of calculations are presented in Table 1 together with

the result computed by using Radon’s series (the zeroth, first and second
terms were taken into account). For comparison also the tabulated values
are given. A much better accuracy of the formulae derived in the present
Paper is seen.

By

[2]
(3]
(4]
(5]

(6]
(7]

[8)
[9]

TABLE 1
tables [1] 1.415945
9 (10) 1.402030
n = (19) [8] 1.149219
(21) [8] 1.395307
tables [1] 4.590004
ne —0.5 (15) 4.628121
) (19) [8] 4.715727
(21) [8] 4.520406
tables [1] 53.571850
ne —1 (16) 53.050842
(19) [8] o
(21) [8] 0o
tables [1] 56.931351
n = —1.001 (23) 56.387464
) (19) [8] 63.864221
(21) [8] 52.053862
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J. ERUZELECKI i M. ZYCZKO WSKI (Krakéw)

APROKSYMACJA CALEK ELIPTYCZNYCH TRZECIEGO RODZAJU
DLA DUZYCH WARTOSCI ARGUMENTU I MODULU

STRESZCZENIE

W pracy podano wzory aproksymujace calki eliptyezne trzeciego rodzaju w pob-
lizu osobliwosci, mianowicie dla wartosci argumentu ¢ bliskich /2, modutu % bliskich 1,
a ponadto parametru n bliskich — 1.

Metoda wyprowadzenia tych wzoréw polega na takim wprowadzeniu malego
parametru ¢ do calki, by pewne czlony funkecji podcalkowej mozna bylo zaniedbaé.
Operacja ta pozwala na efektywne sealkowanie uproszeczonej funkecji i otrzymanie ta
droga rozwigzan przyblizonych.

Podano réwniez przyklad liczbowy, a uzyskane wyniki poréwnano z wynikami
otrzymanymi z szeregéw Radon [8] i z wartodciami tablicowymi [1] calek trzeciego
rodzaju; uzyskana dokladnoéé jest wyraznie wigksza w calym badanym zakresie.



