J. KOGUT (Wrocław)

ON THE CONVERGENCE WITH PROBABILITY ONE FOR A SEQUENCE OF EMPIRICAL BAYES ESTIMATORS

0. Some sequences of empirical Bayes estimators for various problems of empirical Bayes estimation were proposed in papers [2] and [3]. In the construction of these sequences, Bayes estimators were used. Moreover, in [2] it was proved that the sequence of empirical Bayes estimators is asymptotically optimal, i.e., that the expected risks associated with this sequence of estimators are converging to a Bayes risk.

The aim of this paper is to obtain a sequence of empirical Bayes estimators uniformly converging with probability one to a Bayes estimator. In Section 1 we prove a theorem on convergence with probability one for certain sequences of estimators. In Section 2 we use this theorem in a problem of empirical Bayes estimation from [2].

1. Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables with density function f(x) > 0. For every j = 0, 1, ... let $f^{(j)}(x)$ denote the j-th derivative of f(x) and let $f_n^{(j)}(x)$ be an estimator of $f^{(j)}(x)$ based on $X_1, X_2, ..., X_n$.

Let

(1)
$$d(x) = \frac{\sum_{j=0}^{m} w_{j}(x) f^{(j)}(x)}{f(x)},$$

Where $w_j(x)$ (j = 0, 1, ..., m) are known real functions. Consider the sequence $\{d_n(x)\}$ of estimators

(2)
$$d_n(x) = \frac{\sum_{j=0}^m w_j(x) f_n^{(j)}(x)}{f_n^*(x)},$$

Where

(3)
$$f_n^*(x) = \begin{cases} f_n(x) & \text{if } f_n(x) > \delta_n, \\ \delta_n & \text{if } f_n(x) \leqslant \delta_n, \end{cases}$$

With $\{\delta_n\}$ being a sequence of positive numbers such that

$$(4) b_1 n^{-\delta} \leqslant \delta_n \leqslant b_2 n^{-\delta}, 0 < b_1 \leqslant b_2 < \infty, \ \delta > 0.$$

J. Kogut

Now, we prove that under some conditions the sequence $\{d_n(x)\}$ is uniformly convergent to d(x) with probability one on a finite interval.

THEOREM. Let the functions $w_j(x)$ and $f^{(j)}(x)$ (j = 0, 1, ..., m) be bounded on a finite interval I and let

$$\inf_{x\in I}f(x)>0$$
 .

Let the sequences $\{f_n^{(j)}(x)\}\$ of estimators of $f^{(j)}(x)$ satisfy the conditions

(5)
$$\sum_{n=1}^{\infty} P\{\sup_{x\in I} |f_n^{(j)}(x) - f^{(j)}(x)| > C\delta_n\} < \infty \quad (j = 0, 1, ..., m)$$

for every positive constant C.

Then

(6)
$$P\left\{ \limsup_{n\to\infty} |d_n(x)-d(x)| = 0 \right\} = 1.$$

Proof. It can be seen from equalities (1) and (2) that

(7)

$$d_n(x) - d(x) = \sum_{j=0}^m \frac{w_j(x)}{f_n^*(x)} \left(f_n^{(j)}(x) - f^{(j)}(x) \right) + \sum_{j=0}^m \frac{w_j(x)f^{(j)}(x)}{f_n^*(x)f(x)} \left(f(x) - f_n^*(x) \right).$$

From the assumptions of the Theorem we deduce that there exists a positive constant A such that for every j = 0, 1, ..., m

$$\sup_{x\in I} |w_j(x)| \leqslant A \quad \text{ and } \quad \sup_{x\in I} |w_j(x)f^{(j)}(x)/f(x)| \leqslant A \,.$$

For any arbitrary $\varepsilon > 0$ we put $\varepsilon_n = \varepsilon \delta_n/2(m+1)A$. Suppose that the inequalities

(8)
$$\sup_{x \in I} |f_n^{(j)}(x) - f^{(j)}(x)| \leqslant \varepsilon_n \quad (j = 0, 1, ..., m)$$

are satisfied. Since

$$\inf_{x\in I} f(x) > 0$$
 and $\delta_n \to 0$ as $n \to \infty$,

it follows from (8) for j=0 that for $x \in I$ and for n sufficiently large the relations $f_n(x) > \delta_n$ and $f_n^*(x) = f_n(x)$ hold. Hence, by (7) and (8) we have

$$\sup_{x\in I}|d_n(x)-d(x)|\leqslant \varepsilon$$

for n sufficiently large. To sum up, for n sufficiently large we obtain the following relation between the random events:

$$\{\sup_{x\in I}|f_n^{(j)}(x)-f^{(j)}(x)|\leqslant \varepsilon_n \text{ for } j=0,1,\ldots,m\}\subset \{\sup_{x\in I}|d_n(x)-d(x)|\leqslant \varepsilon\}.$$

Therefore, for n sufficiently large

$$\mathbf{P}\left\{\sup_{x\in I}|d_n(x)-d(x)|>\varepsilon\right\}\leqslant \sum_{j=0}^m\mathbf{P}\left\{\sup_{x\in I}|f_n^{(j)}(x)-f^{(j)}(x)|>\varepsilon_n\right\}.$$

Since $\varepsilon_n = C\delta_n$, using conditions (5), the definition of convergence with probability one, the first Borel-Cantelli lemma and the last inequality we obtain (6).

Now we give sequences $\{f_n^{(j)}(x)\}\ (j=0,1,...,m)$ of estimators of density functions and their derivatives satisfying conditions (5).

Let $f_n^{(j)}(x)$ be an estimator of $f^{(j)}(x)$ based on $X_1, X_2, ..., X_n$, as given in [4], i.e., let

(9)
$$f_n^{(j)}(x) = \frac{1}{na_n^{j+1}} \sum_{i=1}^n K^{(j)} \left(\frac{x - X_i}{a_n} \right),$$

where $\{a_n\}$ is a sequence of positive numbers converging to zero, and K(u) is a probability density function such that $\int_{-\infty}^{\infty} |u| K(u) du$ is finite and $K^{(s)}(u)$ is a continuous function of bounded variation for s = 0, 1, ..., j. Schuster proved (see Lemma 2.4 in [4]) the following

LEMMA 1. Let $f_n^{(j)}(x)$ be an estimator of $f^{(j)}(x)$ given by equality (9). Let f(x) and its first j+1 derivatives be bounded and let $\{\varepsilon_n\}$ be a sequence of positive numbers such that $a_n = o(\varepsilon_n)$. Then there exist positive constants C_1 and C_2 such that

$$\mathbf{P} \left\{ \sup_{-\infty < x < \infty} |f_n^{(j)}(x) - f^{(j)}(x)| > \varepsilon_n \right\} \leqslant C_1 \exp \left[-C_2 n \varepsilon_n^2 a_n^{2j+2} \right]$$

for n sufficiently large.

Now, using Lemma 1 we obtain

COROLLARY 1. For every j = 0, 1, ..., m let $f_n^{(j)}(x)$ be an estimator of $f^{(j)}(x)$ given by (9), where

$$d_1 n^{-1/(2m+4)} \leqslant a_n \leqslant d_2 n^{-1/(2m+4)} \quad (0 < d_1 \leqslant d_2 < \infty)$$

and

$$K(u) = 1/\sqrt{2\pi} \exp[-u^2/2].$$

Let the sequence $\{\delta_n\}$ satisfy (4) with δ such that $0 < \delta < 1/(2m+4)$. If f(x) and its first m+1 derivatives are bounded, then the sequences $\{f_n^{(j)}(x)\}$ $(j=0,1,\ldots,m)$ satisfy conditions (5) for any interval $I \subset (-\infty,\infty)$.

Proof. We can easily verify that a_n and K(u) in Corollary 1 satisfy the conditions concerning $f_n^{(j)}(x)$ given by (9) and $a_n = o(\delta_n)$. Substituting $\varepsilon_n = C\delta_n$, C being a positive constant, we infer from Lemma 1 that condi-

596 J. Kogut

tions (5) hold, since

$$\sum_{n=1}^{\infty} C_1 \exp(-C_3 n \delta_n^2 a_n^{2j+2})$$

is finite for all positive constants C_1 , C_3 and j = 0, 1, ..., m.

2. Now we consider the problem of empirical Bayes estimation. Assume that we observe a random variable X whose density function $f(x|\theta)$ depends on an unknown parameter $\theta \in \Omega$, with Ω being the parameter space. Let $\lambda(\theta)$ be a real function of θ and let d(x) stand for a decision when X = x is observed. We wish to estimate $\lambda(\theta)$ with respect to the loss function $L(d(x), \lambda(\theta))$.

In the Bayes framework it is assumed that θ has a distribution function $G(\theta)$ known a priori and we use the Bayes estimator $d_G(x)$ minimizing the expected risk

$$r(d, G) = \int\limits_{R} \int\limits_{\Omega} L(d(x), \lambda(\theta)) f(x|\theta) dG(\theta) dx.$$

In the empirical Bayes framework we suppose that the decision problem just described occurs repeatedly and independently with the same unknown $G(\theta)$. Thus we make the following assumptions: Let (X_1, Θ_1) , $(X_2, \Theta_2), \ldots, (X_n, \Theta_n), \ldots$ be a sequence of independent random vectors, Θ_n having a common a priori distribution $G(\theta)$, and the conditional density function of X_n , given $\Theta_n = \theta_n$, being $f(x|\theta_n)$ which belongs to the family of density functions $\{f(x|\theta)\colon \theta\in\Omega\}$. Let the values of $\theta_1, \theta_2, \ldots$ and the distribution function $G(\theta)$ remain unknown. We know only the values x_1, x_2, \ldots of the random variables X_1, X_2, \ldots , and the form of the family $\{f(x|\theta)\colon \theta\in\Omega\}$. On the base of known observations $x_1, x_2, \ldots, x_n; x_{n+1} = x$ we construct the empirical Bayes estimator $d_n(x) = d_n(x_1, x_2, \ldots, x_n; x)$ for the unknown value of the function $\lambda(\theta_{n+1})$ provided a loss function $L(d_n(x), \lambda(\theta_{n+1}))$ is given. Therefore, we have

Remark 1. The random variables X_1, X_2, \ldots are independent and have a common marginal density function

$$f_G(x) = \int_{\Omega} f(x|\theta) dG(\theta).$$

Suppose that the Bayes estimator $d_G(x)$ of $\lambda(\theta)$ can be written in the form

$$d_G(x) = \frac{\sum_{j=0}^m w_j(x) f_G^{(j)}(x)}{f_G(x)},$$

where $w_j(x)$ are known real functions. Then, using Remark 1 and suitable estimators $f_n^{(j)}(x)$ (j=0,1,...,m) for $f_G^{(j)}(x)$ we estimate $d_G(x)$ by $d_n(x)$ from equality (2). If the assumptions of the Theorem from Section 1 are satisfied, then the sequence of empirical Bayes estimators $\{d_n(x)\}$ is uniformly convergent to $d_G(x)$ with probability one on a finite interval. This fact is proved in the sequel, where the problem (see [2]) of empirical Bayes estimation of $\lambda(\theta) = \theta$ with a squared loss function for the family of exponential densities is considered.

Let $\{f(x|\theta): \theta \in \Omega\}$ be a family of density functions given by

(10)
$$f(x|\theta) = \begin{cases} e^{-\theta x} \beta(\theta) h(x), & x > a, \\ 0, & x \leq a, \end{cases}$$

where a may be finite or $a = -\infty$, h(x) > 0 for x > a, $\theta \in \Omega$, with Ω being any interval of the real line.

For the squared loss function the Bayes estimator of $\lambda(\theta) = \theta$ (see [2]) is given by

(11)
$$d_G(x) = \frac{\int\limits_{\Omega} \theta f(x|\theta) dG(\theta)}{f_G(x)}.$$

LEMMA 2 (see Lemma 2 in [1]). Let $f(x|\theta)$ be given by (10) and let

$$f_G(x) = \int_{\Omega} f(x|\theta) dG(\theta),$$

where $G(\theta)$ is any distribution function. Then the existence and continuity of $h^{(j)}(x)$ for x > a imply the existence and continuity of $f_G^{(j)}(x)$ for x > a. Moreover, for x > a

(12)
$$f_G^{(1)}(x) = \frac{h^{(1)}(x)}{h(x)} f_G(x) - \int_{\Omega} \theta f(x|\theta) dG(\theta).$$

Therefore, if $h^{(2)}(x)$ exists and is continuous for all x > a, then: 1° by equalities (11) and (12) for x > a we have

$$d_G(x) = \frac{[h^{(1)}(x)/h(x)]f_G(x) - f_G^{(1)}(x)}{f_G(x)},$$

thus $d_G(x)$ is of the form (1), where m=1, $w_0(x)=h^{(1)}(x)/h(x)$ and $w_1(x)=-1$;

 2° the functions $w_0(x)$, $w_1(x)$ (of the form given above) and $f_G(x)$, $f_G^{(1)}(x)$, $f_G^{(2)}(x)$ (from Lemma 2) are continuous for x > a, and so they are bounded for any finite interval $I_1 \subset (a, \infty)$.

To obtain

$$\inf_{x\in I_1} f_G(x) > 0$$

it suffices to suppose that

$$\inf_{x\in I_1}\inf_{\theta\in\Omega}f(x|\theta)>0.$$

Let

$$d_n(x) = \frac{[h^{(1)}(x)/h(x)]f_n(x) - f_n^{(1)}(x)}{f_n^*(x)} \quad \text{for } x > a,$$

where the estimators $f_n(x)$, $f_n^{(1)}(x)$ and $f_n^*(x)$ are given by (9) and (3), respectively, with

$$K(u) = 1/\sqrt{2\pi} \exp[-u^2/2],$$
 $d_1 n^{-1/6} \leqslant a_n \leqslant d_2 n^{-1/6} \quad (0 < d_1 \leqslant d_2 < \infty), \quad 0 < \delta < 1/6.$

By Corollary 1 the sequences $\{f_n^{(j)}(x)\}\ (j=0,1)$ of these estimators satisfy conditions (5) for any finite interval $I_1 \subset (a, \infty)$.

Finally, since all the assumptions of the Theorem from Section 1 of this paper are valid, we obtain

$$\mathrm{P} \left\{ \limsup_{n \to \infty} |d_n(x) - d_G(x)| = 0 \right\} = 1.$$

The same result we can show for Case II from paper [1] by a quite similar detailed analysis.

References

- [1] M. V. Jr. Johns and J. Van Ryzin, Convergence rates in empirical Bayes twoaction problems, II. Continuous case, Ann. Math. Statist. 43 (1972), p. 934-947.
- [2] P. E. Lin, Rates of convergence in empirical Bayes estimation problems: Continuous case, Ann. Statist. 3 (1975), p. 155-164.
- [3] J. R. Rutherford and R. G. Kruchkoff, Some empirical Bayes techniques in point estimation, Biometrika 56 (1969), p. 133-137.
- [4] E. F. Schuster, Estimation of a probability density function and its derivatives, Ann. Math. Statist. 40 (1969), p. 1187-1196.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY 50-370 WROCŁAW

Received on 4. 3. 1977

J. KOGUT (Wroclaw)

O ZBIEŻNOŚCI Z PRAWDOPODOBIEŃSTWEM JEDEN DLA CIĄGU EMPIRYCZNYCH ESTYMATORÓW BAYESOWSKICH

STRESZCZENIE

W pracy rozważono zagadnienie empirycznej bayesowskiej estymacji. Korzystając z odpowiednich estymatorów funkcji gęstości i jej pochodnych zaproponowano ciąg empirycznych bayesowskich estymatorów. Dowiedziono, że ciąg ten jest jednostajnie zbieżny z prawdopodobieństwem jeden do bayesowskiego estymatora. Podano również przykład takiego ciągu estymatorów.