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ON THE CONVERGENCE WITH PROBABILITY ONE
FOR A SEQUENCE OF EMPIRICAL BAYES ESTIMATORS

0. Some sequences of empirical Bayes estimators for various problems
of empirical Bayes estimation were proposed in papers [2] and [3]. In the
construction of these sequences, Bayes estimators were used. Moreover,
in [2] it was proved that the sequence of empirical Bayes estimators
is agymptotically optimal, i.e., that the expected risks associated with
this sequence of estimators are converging to a Bayes risk.

The aim of this paper is to obtain a sequence of empirical Bayes
estimators uniformly converging with probability one to a Bayes esti-
mator. In Section 1 we prove a theorem on convergence with probability
one for certain sequences of estimators. In Section 2 we use this theorem
in a problem of empirical Bayes estimation from [2].

1. Let X,, X,, ... be a sequence of independent and identically distri-
buted random variables with density function f(x)> 0. For every
J=0,1,... let f?(2) denote the j-th derivative of f(x) and let f9(x)
be an estimator of f)(x) based on X,, X,, ..., X,.

Let

( jzm w, (@) (@)
1) S ,
) d(x) @

Where w;(x) (j = 0,1, ..., m) are known real functions.
Consider the sequence {d,(x)} of estimators

3 w,(@)f(2)
@) dn(o) = =
Where "
% fn(m) ]f fn(w) > 67;7
9 fal@) = {6,. it . ()< 8,,

With {48,} being a sequence of positive numbers such that
(4) b <8, <bn?, 0<b <b< o0, §>0.
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Now, we prove that under some conditions the sequence {d,(»)}
i8 uniformly convergent to d(x) with probability one on a finite interval.

THEOREM. Let the functions w;(z) and fU(z) (j =0,1,...,m) be
bounded on a finite interval I and let

inf f(z) > 0.
el
Let the sequences {f)(x)} of estimators of f9 () satisfy the conditions

(5) 2P{sup|f(’)(a: —fMNa)| > C8}< 0 (j=0,1,...,m)

xel

for every positive constant O.
Then
(6) P {limsup |d, () — d(z)| = 0} =1.

n—>o00 el
Proof. It can be seen from equalities (1) and (2) that
(7)
\ ¥;\%) (@)

s ()
dufa)=dle) = 320 10 f‘”()+2“—mf—(3’—(f< ~fi(@)-

From the assumptions of the Theorem we deduce that there exists
a_ positive constant 4 such that for every j =0,1,...,m

sup lw;(z)l < 4 and  sup |w;(2)fV(2)/f(z) < 4
zel

zel

For any arbitrary &> 0 we put ¢, = &4, /2(m+1)A. Suppose that
the inequalities

(8) sup |[f9(z) —fP ()| <e, (j=0,1,...,m)
xel

are satisfied. Since

inff(x) >0 and 6,—>0 as n—> oo,

xel

it follows from (8) for j = 0 that for # e I and for = sufficiently large the
relations f, (z) > 6, and f; (z) = f,(x) bold. Hence, by (7) and (8) we have

sup |dy (#) — d (@) < ¢
for n sufficiently large. To sum up, for n sufficiently large we obtain the

following relation between the random events:

{Slel})lfff’(w)—f‘”(mn <e, for j =0,1,...,m} c {sup|d,(¢)—d(@)| < &}
z : : zel ’
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Therefore, for n sufficiently large

m
P {sup |d, (2) —d(a)| > &} < D P {sup |fP(z) —f(@)| > e,}.
zel ji=o xel

Since ¢, = C4,, using conditions (5), the definition of convergence
with probability one, the first Borel-Cantelli lemma and the last inequal-
ity we obtain (6). ‘

Now we give sequences {f¥(z)} (j =0,1,...,m) of estimators of
density functions and their derivatives satisfying conditions (5).

Let f9(x) be an estimator of f¥(x) based on X,, X,,..., X,, as
given in [4], i.e., let

(©) @ = — ZK“’(”_X‘),

naltt a,

i=1
where {a,} is a sequence of positive numbers converging to zero, and K (u)
is a probability density function such that f |u| K (u)dw is finite aund
K®(u) is a continuous function of bounded variation for s = 0,1, ..., j.

Schuster proved (see Lemma 2.4 in [4]) the following

LeMMA 1. Let f9(x) be an estimator of f9(x) given by equality (9).
Let f(x) and its first j+1 derivatives be bounded and let {e,} be a sequence
of positive numbers such that a, = o(e,). Then there exist positive constants C,
and C, such that

P{ sup |fP(@)—fO(a)| > e,} < Orexp[—Cyneyay/*"]

—00<T<00
for n sufficiently large.
Now, using Lemma 1 we obtain

COROLLARY 1. For every j = 0,1, ..., m let f{)(z) be an estimator of
T () given by (9), where '

dl'n‘”(z'"“) <a, < dzn_ll(2m+4) (0<d, < dy < )

and

K (u) = 1/V2mexp[—u?/2].

Let the sequence {6,} satisfy (4) with & such that 0 < 6 < 1/(2m+4).
If f(x) and its first m-1 derivatives are bounded, then the sequences {fV)(x)}
(J=0,1,...,m) satisfy conditions (B) for any interval I c (— oo, oo).
Proof. We can easily verify that a, and K (u) in Corollary 1 satisfy
the conditions concerning f{?(x) given by (9) and a, = o(4,). Substituting
&, = 04,, O being a positive constant, we infer from Lemma 1 that condi-
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tions (5) hold, since

2 C,exp(—C,ndallt?)

n=1

is finite for all positive constants C,, C;and j = 0,1, ..., m.

2. Now we consider the problem of empirical Bayes estimation.

Assume that we observe a random variable X whosé density func-
tion f(x|6) depends on an unknown parameter 6 € 2, with 2 being the
parameter space. Let 1(0) be a real function of 6 and let d(«) stand for
a decision when X = z is observed. We wish to estimate 1(6) with respect
to the loss function L (d(x), A(6)).

In the Bayes framework it is assumed that 6 has a distribution func-
tion @ (0) known a priori and we use the Bayes estimator d;(z) minimizing
the expected risk

rd, Q) = ffL(d(ao), A(0))f(x16)d6G (0) dw

In the empirical Bayes framework we suppose that the decision
problem just described occurs repeatedly and independently with the
same unknown G (). Thus we make the following assumptions: Let (X,, ©,),
(X,, 0,),...,(X,, 0,), ... be asequence of independent random vectors, @,
having a common a priori distribution G(0), and the conditional density
function of X,,, given @, = 0,, being f(=|6,) which belongs to the family of
density functions {f(x|0): 6 € 2}. Let the values of 0,,0,,... and the
distribution function G'(6) remain unknown. We know only the values
%y, &g, ... of the random variables X,, X,, ..., and the form of the family
{f(x10): 6 € 2}. On the base of known observations ;, @, ..., %,; Tpyy =@
we construct the empirical Bayes estimator d,(z) = d,(2,, gy ..., p; T)
for the unknown value of the function 1(6,,,) provided a loss function
L(d, (), A(0, 4+1)) i8 given. Therefore, we have

Remark 1. The random variables X,, X,,... are independent and
have a common marginal density function

fal@) = [f(x10) d6).
Q2

Suppose that the Bayes estimator dgy(x) of A1(6) can be written in
the form

w, (@)f (@
2 i@
dg(z) = ’

Jo(®)
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where w;(») are known real functions. Then, using Remark 1 and suitable
estimators fU'(z) (j = 0,1, ..., m) for f§ (x) we estimate dgy(z) by d, ()
from equality (2). If the assumptions of the Theorem from Section 1 are
satisfied, then the sequence of empirical Bayes estimators {d,(x)} is uni-
formly convergent to dg(x) with probability one on a finite interval.
This fact is proved in the sequel, where the problem (see [2]) of empirical
Bayes estimation of 41(6) = 0 with a squared loss function for the family
of exponential densities is considered.
Let {f(x10): 6 € 2} be a family of density functions given by

e "B(0)h(z), =>a,
(10) sty = {0 vz
where a may be finite or a = —oo, h(z) > 0 for 2 > a, 6 € 2, with Q

being any interval of the real line.
For the squared loss function the Bayes estimator of 1(6) = 0 (see [2])
is given by
gfof(wlﬂ)dG(ﬁ)
(11 dg(x) =
) ¢ Ja(®)

LeMMA 2 (see Lemma 2 in [1]). Let f(x|6) be given by (10) and let

fal@) = [f(216)a6 (o),

where G(0) is any distribution function. Then the existence and continuity
of W (x) for x> a imply the existence and continuity of f9(x) for > a.
Moreover, for x> a

R
(2) @) =5 2 ot — [ erwioaeo.

Q

Therefore, if h®)(x) exists and is continuous for all # > a, then:
1° by equalities (11) and (12) for # > a we have

(A (@) [b(2) 1f (@) — fQ ()
fa(®) ’

thus dg(s) is of the form (1), where m =1, w,(x) = b (z)/k(x) and
wy(z) = —1;

2° the funections wy(x), w,(x) (of the form given above) and fg (=),
I (@), f@(x) (from Lemma 2) are continuous for # > a, and so they are
bounded for any finite interval I, < (a, ).

dg(®) =
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To obtain
inf f;(x) > 0
$e.ll
it suffices to suppose that
inf inf f(z[0) > 0

Let
[2Y (@) [ (2) 1, (%) —fD (@)
fa(®)

where the estimators f,(z), f(x) and f,(x) are given by (9) and (3),
respectively, with

@y () =

for > a,

K(u) = 1/V2mexp[ —u2/2],
din < a, <dpn™  (0<d;<dy< ), 0<3<1/6.

By Oorollary 1 the sequences {f{)(2)} (j = 0, 1) of these estimators
satisfy conditions (5) for any finite interval I, = (a, o).

Finally, since all the assumptions of the Theorem from Section 1
of this paper are valid, we obtain

P{hmsup]d (#) —dg(x)] = 0} =1.

n—»ooa:el

The same result we can show for Case II from paper [1] by a quite
similar detailed analysis.
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0 ZBIEZNOSCI Z PRAWDOPODOBIENSTWEM JEDEN
DLA CIAGU EMPIRYCZNYCH ESTYMATOROW BAYESOWSKICH

STRESZCZENIE

W pracy rozwazono zagadnienie empirycznej bayesowskiej estymacji. Korzys-
tajac z odpowiednich estymatoréw funkeji gestodei i jej pochodnych zaproponowano
ciag empirycznych bayesowskich estymatoré6w. Dowiedziono, zZe ciag ten jest jedno-
stajnie zbiezny z prawdopodobieristwem jeden do bayesowskiego estymatora. Podano
rowniez przyklad takiego ciagu estymatorbow.



