ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
IX, 3 (1968)

Krystyna SOCHACZ and J. SZCZEPKOWICZ (Wroclaw)

A DESCRIPTION OF THE AS-LANGUAGE FOR THE ELLIOIT 803
COMPUTER

0. Summary.

A simple but powerful programming language is described, which
has been designed and implemented by the authors on the National
Elliott 803 computer to assist in preparing readable machine-coded
programmes for that machine. This language, called Addressing Symbolism
(AS), contains the whole Elliott TI code and allows the use of symbolic
addresses and independent levels of nomenclature. A precise definition
of the syntax of the language and some important features of the trans-
lator are given. Some knowledge on the NE 803 computer is assumed.
but the main features of the language may be well understood even
without this knowledge.

1. Introduction.

The programing languages used up to now at Wroctaw University
to programme the Elliott 803 computer were the Elliott Algol, the
MARK IIT Autocode and the so called TI code. The latter was designed
for preparing machine coded programmes by hand. In the Elliott Algol
and MARK III languages there are also facilities for writing a piece
of programme in machine code. Thus there are, theoretically, three lan-
guages which might be used to make a machine coded programme. It
follows from experience that no one of these possibilities is fully satis-
factory when a fairly big machine coded programme is to be written.
As a matter of fact, only the TI code satisfies the demand for an efficient
object programme with the respect to any feature the programmer may
think about. Making a big TI coded programme, however, is a very
unpleasant chore, since in TI there are only octal/decimal, octal and
decimal notations, and a few facilities such as relative addresses and
partitioning the programme into blocks. Alphanumeric data may also
be handled, but these should be carefully divided into groups of six

296 Krystyna Sochacz and J. Szczepkowicz

characters. All the address calculations and assignments must be done
by hand. This is, evidently, a highly clerical task; each experienced
programmer writes his machine codings using an “ad hoc” symbolice
notation of his own, and then replaces all symbols by suitable addresses.
It is observed that most of the errors are introduced at the latter stage.
The NE 803 software supplied by the manufacturer contains no item
to mechanize this stage, and this was the reason for constructing a new
language called AS (Addressing Symbolism). The main features of the
AS programming system may be summarized as follows:

(a) The TI code is a proper subset of the AS language. This feature
is extremely valuable, since the numerous Elliott TI subroutines can
be used without any change, including relative addressed binary tapes
(TICRB tapes).

(b) Any number of independent levels of nomenclature may be
used in the source programme. This means that a closed AS subroutine
may be inserted into any AS programme with no restrictions posed on
the identifiers used in the rest of the programme.

(c) Alphanumeric data may be handled with the same ease as in
the MARK III Autocode.

(d) There are no identifiers reserved in the AS language.

(e) No jump-decode tables are inserted by the translator into the
object programme with the effect that the latter is as efficient as it was
intended in the source programme.

(f) The AS translator reduces to a minimum manipulating the machine
control keyboard. The output of information useful in debugging the
programme and correcting it after translation is optional.

(g) The AS translator provides an extensive checking of the source
programme and precise error indications. A considerable number of errors
can be corrected without retranslating the programme from the beginning.

(h) Unless specifically demanded, all data read so far by the trans-
lator and the translator itself are automatically protected against over-
writing due to programmer’s error.

(i) The AS translator is not much slower than the TI translator.
The latter reads about 3 machine words per second; a real AS programme
of 1100 words containing 1500 symbolic addresses and over 300 declared
names has been translated in less than 520 seconds. The time quoted
includes sorting various name lists and final addressing after reading
the programme in.

(j) The AS translator occupies less than 900 words together with its
working locations and thus can be practically used even on machines with
2048 word store. It is easy to arrange the programme in such a way that
the translator is overwritten at run time of the translated programme.

The AS-language for the Elliott 803 computer 297

2. The syntax and semantics of the AS language. The methodology
of the translator.

The alphabet of the AS language consists of the Elliott Telecode
characters. To specify the syntax of the language we will apply the
method of Iverson [1]. In the syntax table below the following conven-
tions are used:

(a) The symbols of defined syntactic units are two-digit numbers.
They are used also for reference purposes.

(b) A § is used to denote the syntactic unit being defined; a recursive
definition contains therefore a §.

(c) The allowable forms of a syntactic unit are separated by vertical
lines.

(d) Any other symbol, not defined but occurring in a definition,
represents itself.

(e) Two-letter symbols are used to denote page layout characters
and blanks, namely

bl for blank,

sp for space,

cr for carriage return,
If for line feed.

(f) The characters bl er sp may be used arbitrarily in all those syn-
tactic units whose definitions do not contain these characters explicitly
or implicitly.

The syntax table is followed by suitably arranged comments to
describe the semanties of the language and relevant information on the
translator.

The syntax table of the AS language

. SYM- -
NAME BOL DEFINITION
empty 1)
letter 10 A|B|C|---|X|Y|Z
octal digit 11 0(1]2|3]|4|5[6]7
digit 12 0[1}2|3|4|5!6/7|8|9
teleprinter character 13 10]12[*[8|=|"l,1s]—|.1°/ol ()} 4 | 2| /|10| K| 8 |cr|If
alphanumeric character 14 13|01
identifier 15 10/§ 10{§ 12
unsigned integer 16 o12|§ 12
signed integer 17 +16|— 16
absolute address 18 1617

298 Krystyna Sochacz and J. Szczepkowicz

SYM-
NAME BOL DEFINITION
relative address 19 18,16
integer constant 20 17|17 , 16
symbolic address 21 15|15 17
preset parameter 22 16'|4+ 167|19°1§ §
address 23 18|22 18|19{22 19|21|22 21
function part 24 1111
B-line 25 s/
instruction 26 |24 23
instruction pair 217 26 25 26
trigger 28 27 (
-octal group 29 11111111111111111111111111
alphanumeric group 30 ¥,1414 1414 14 14
comment 31 13|§ 13
title 32 $ 310!
copied group 33 J|= 310bl
fixed-point fraction 34 17 .16
floating-point number 35 34 /17|34 / 16
label 36 g(15)
word 37 20|27|29|30|32|34|35]°/,
line 38 33 36 37 If|28
temporary directory 39 20 $ If
group of lines 40 38139 §|§ §
maximum index 41 o1(16)
label list 42 15§, 15
variable list 43 15 41§, 15 41
label declaration 44 J|LABELS: 42 If
variable declaration 45 O|VARIABLES: 43 If
declaration 46 44(45|8 §
local declaration 47 ¢{46 BEGIN: If
end of block 48 *UD
block 49 47 40 48
group of block 50 49|§ 49
working space declaration 51 J|WORKSPACE: 16 — 16 If
list of block addresses 52 3336 + 16 If|§ §
directory 53 33 01f 51 52 46 48
programmse 54 53 50|53 50 END: If|§ (TI coded blocks)
Remark. For typographical reasons the teleprinter character (@ has

been changed to 4.

The symbols not discussed in the below references are either self-
cvident or of secondary importance. In any case the reader is referred
to [2] for further information.

The AS-language for the Elliott 803 computer 299

Ref. 13. A teleprinter character is defined to be one that moves
the carriage or paper. Shifts are not mentioned here as they may be used
arbitrarily by the typists provided that the printed form of the programme
is correct when reproduced automatically on the teleprinter.

Ref. 15. The definition of the identifier conforms to the correspond-
ing ALGOL definition, but identifiers longer than six characters are
automatically truncated to six leftmost characters. Spaces can be used
arbitrarily within the identifiers. Thus the identifiers

FILM REWIND
FILM REW
FILMRE

are all assumed to be identical while the identifiers

INFEAS
INF1 S
INF3A

are all distinct.
Ref. 19. Relative addresses are interpreted just as in the TI code.
Ref. 21. An address of the form

IDENT

denotes “the absolute address assigned to the identifier IDENT” while
the address

IDENT 45

denotes “the absolute address assigned to the identifier IDENT plus 5”.
The form IDENT-5 is also allowable and has an analogous interpretation.
The assignment of addresses is done either automatically by the trans-
lator, or is given explicitly by the programmer, or both. See also ref. 52.

Ref. 24. A function part consists of two octal digits. In the authors’

opinion, with a systematic instruction code such as the Elliott’s one,
there is no need for a symbolic function part.

Ref. 25, 26, 27. An instruction pair may be also punched in some
abbreviated form, e.g.

: (representing a zero word)
40 STOP: (representing 40 STOP : 00 0)

Ref. 28. The left bracket following an instruction pair causes the
translator to transfer control to the working location where the pair
has been stored. If the trigger does not contain an effective jump in-

Zastosowania Matematyki. Tom IX, z. 3 7.

300 Krystyna Sochacz and J. Szczepkowicz

struction, the machine stops. Triggers should be used with care, as the
programme may be far from being complete when the trigger is being
obeyed (see ref. 54 and 3.6).

Ref. 30. This is a relic of the TI code no more useful in AS programmes.

Ref. 32. A title is a word starting with a $ sign and ending with a bl.
Thus the title may contain any teleprinter characters except of blanks.
The characters are stored in consecutive locations, six in one, together
with an implicit end symbol, and are printed by means of the TU12
subroutine. The following example shows how titles are stored: the
characters

$or If AX+BYHCZ =15 bl er If

produce the same machine words as the characters

80353641701342 cr If
80711343720601 cr If
—21 er If

Ref. 33. A copied group looks like a title with the starting $ replaced
by a = . This group is copied on the output (punch 1) and is completely
ignored by the translator in all other respects.

Ref. 36. Any word can be labelled with an identifier declared as
label (see ref. 44). A right bracket separates the identifier from the word.

Ref. 37. Although a title occupies in general more than one machine
word, it is also treated as a word. A word containing °/, only is used to
skip a location. This is of value when modifying a programme already
in store.

Ref. 38. A line is defined to be a word followed by a If. Thus the
blanks which terminate a title must also be folowed by a If. Each word
may be preceded by a copied group and a label, generally in that se-
quence. The other sequence also may be used, but without erasing any
information on the line read so far (see [2]).

Ref. 39. A temporary directory is used to indicate, where the infor-
mation following it should be placed. Its effects are just as those de-
seribed in [2]. A temporary directory has also the effect of “switching
off” the store protection mechanism mentioned in the Introduction
under (h) thus providing a facility to modify the programme already
in store.

Ref. 41. The maximum index is used in the variable declaration to
state that an array of store locations should be reserved for the specified
identifier. If, for instance, the symbols

FUNVAL(150)

The AS-language for the Elliott 803 computer 301

occur in the wvariable declaration then 151 consecutive locations are
reserved for the identifier FUNVAL to store the values of 151 indexed
varables

FUNVAL, FUNVAL+1, FUNVAL+2, ..., FUNVAL+150
Ref. 42, 43, 44, 45, 46. An example of the label declaration is
LABELS: READ, PRINT, L1, LAB, STOP, END, COLFAC
and an example of the variable declaration is
VARIABLES: I, J, COL, FUNVAL(150), ARG(150), STACK

Those two types of declaration may occur in any sequence and may
be mixed in any mode. At this point it should be emphasised that no
line of the programme (except of those containing titles and copied
groups) may contain more than 70 printable characters; thus as many
LABELS: and VARIABLES: should be used as many lines are required
to declare all the identifiers wanted at a particular level of nomenclature
(see ref. 47).

The identifiers declared as variables are assigned an ascending
sequence of addresses taken from the interval specified in the working
space declaration (see ref. 51). Label identifiers are first assigned zero
addresses which are suitably changed when a labelled word is being
translated. This mechanism is convenient in checking the proper use
of identifiers: at the same level of nomenclature no variable name may
be used to label a word, and no label may occur twice; those two condi-
tions are simply checked by examining the address assigned to the name
in question.

Ref. 47. The only difference between a local declaration and a decla-
ration is that the former is terminated by a BEGIN: on a line of its
own, and the latter by a block end. The purpose of a local declaration
is to define a level of nomenclature valid only in the block where the
declaration occurs. Each level of nomenclature is assigned a new set
of locations to avoid errors when a subroutine calls another one, and
this still another one and so on. Thus the local declaration do not serve for
savings of storage space as in ALGOL. Their practical purpose is to
enable the programmer to write a block (a subroutine, say) independ-
ently of the identifiers used in the rest of the programme. In practical
programmes, however, one or two labels are left nonlocal to ensure easy
symbolic communication with the other blocks. This can be also achieved
by another method mentioned in ref. 52.

When a clash of a local and nonlocal identifier occurs, the offending
nonlocal identifier becomes unavailable.

302 Krystyna Sochacz and J. Szczepkowicz

Ref. 48, 49. A block is a group of lines to be placed in consecutive
locations of the store. This group may, or may not, be preceded by local
declarations and is terminated with an end of block, which is a right
bracket on a line of its own or an asterisk followed by a If (or ¢r If). The
right bracket causes the translator to wait in a keyboard loop, while
the other end of block causes the next block to be read without delay.
A block end also causes the local forward references to be completed.
We call a forward reference every situation when a label identifier occurs
in a symbolic address in a line earlier than the one labelled with this
identifier.

Ref. 51. The working space declaration serves for two main purposes.
First, it specifies the auxiliary locations the translator is allowed to use
for its own working purposes, e.g. for name lists and for information
necessary to cope with forward references. Second, these locations are
to be used by the translated programme to store the values of variables.
No block of the programme can be put into this area. The numbers
and N occurring in a working space declaration of the form.

WORKSPACE: M —N

are subjected to the condition
4 <M< N<T728—B

where B is the number of blocks in the programme being translated.
it should be emphasised that the above condition does not prevent the
use of the translator’s area (locations 7285 onwards) in the translated
programme. See also ref. 52.

Ref. 52. The list of block addresses specifies the locations in the
store of the beginnings of the consecutive blocks. Each element of the
list may be labelled with an identifier. This has the effect that the iden-
tifier is assigned the address following it. Thus such an identifier must
not be declared at the nonlocal level of nomenclature neither as a label
nor as a variable since it is already declared in an obvious sense.

If an address greater than 7284 e.g.

+7500

is found in the list of block addresses, no error is indicated although the
location 7500 contains a part of the translator. An alarm message is
printed only after a trial to overwrite the location 7500 under the control
of the translator. Thus there are easy means to overwrite the translator
at run time of the translated programme. Another method of overwriting
the translator becomes evident after inspecting the method of address
assignment (see example in 4.1).

The AS-language for the Elliott 803 computer 303

Ref. §3. The directory of a programme consists of a d sign on a line
of its own, the working space declaration, the list of block addresses
and declarations (assumed to be nonlocal) and a terminating symbol
identical with a block end. The 0 sign causes some initializations to be
done, e.g. releasing the protection of the previously read programme,
setting the scaling factor to 1 and so on. If the working space declaration
is omitted, the programme is assumed to be written in pure TI code,
and thus the syntactic units specific to the AS language must not be
used except of titles. '

After reading the directory in, the list of block addresses is
transformed into the list of allowable store areas for blocks, and
the nonlocal identifier list is suitably sorted to enable dichotomic
search when reading the rest of the programme. Local identifier lists
are sorted when a BEGIN: is encountered. A fast sift method is
employed, and even in a fairly big programme this process takes
only a few seconds.

Ref. 54. An END: terminating the symbolic part of the programme,
or the whole programme, causes the translator to complete all words
so far left incomplete due to nonlocal forward references. After completing
the programme the translator comes to a keyboard loop. Further blocks
can be read but these must be written in pure TI code. This is of certain
value if the translated programme employs library subroutines such
as number input and output. For obvious reasons it is convenient to
read these subroutines at the end.

It should be emphasised that the END: should be punched after
a block end. The omission of END: in a symbolié programme is a serious
error which cannot be detected by the translator if the latter had to be
flexible enough.

Special characters used in tape editing. Two consecutive minuses
punched after a line of the programme form the end-of-tape symbol
and cause the translator to wait in a keyboard loop. If a ? is punched
on the programme tape, the translator ignores all characters since the
last If, double minus, left bracket in a trigger and the right bracket which
is a block end. It will not operate within an alphanumeric group or title,
nor within a copied group.

To erase an incorrectly punched alphanumeric group, a sufficient
amount of ?’s should be punched to bring the number of -non-shift
characters after . up to seven.

A wrongly punched title can be erased by punching a ? after the
bl and before the If terminating the relevant wrong line (in-the sense
of the syntax table).

304 Krystyna Sochacz and J. Szczepkowiecz

3. The AS translator.

3.1 Storage requirements. The AS translator, known in the Prog-
ramme Library at the Wroclaw University under the symbol TU102,
uses 874 + B locations, where B is the number of blocks in the translated
programme. When used on a machine with 8192 store, the standard
version of TU102 occupies the following locations:

7285—B, ..., 7283, 7284 for the list of block addresses,
7285 —8046 for the translator’s body,
8047 —8158 for the main working locations.

The translator uses also the locations specified in the working space
declaration (see 2, ref. 51). The last 34 locations of the store are left free,
as required by the NE 803 software (the programme T22/23).

3.2. Tapes. Two tapes are provided. The standard tape, marked
803 TU102(CB), is an absolute addressed binary tape for input to stan-
dard locations. An AS coded tape, marked 803 TU1l02(AS), is also
available.

3.3. Entry points. An AS programme is always read by reader 1.
To commence translating, an entry should be made to any half of the
location 7936 (1111100000000). Once put into operation, the translator
never comes to a stop, unless a trigger intervenes. If a halt is required
(due to the right bracket at the block end, a double minus or a programming
error), the translator comes to a keyboard loop (see 3.5).

Another entry point, the first half of the location 7549 (1110101111101),
is used to re-read a TI or TICRB coded block. A symbolic block cannot
be re-read, as there is no mechanism for removing the information gene-
rated when translating labels and symbolic addresses.

The translator can also be used as a subroutine to read a single line
(see 3.8).

3.4. Time. The time taken to translate an AS programme varies
considerably according to the type of data read. The observed average
rate of reading is 120 words per minute (see also (i) in the Introduction).
It is worth emphasising that the time of translation is not much sensitive
to the number of declared identifiers, as the translator performs only
dichotomic searches through name lists.

3.5. Manual control. When the translator is working, it is controlled
only via the word generator on the machine’s keyboard. The buttons
of the NE 803 word generator, essential for operating the translator,
are represented below by the letters G, C, 4, L, 8 (standing for Go on,
Copy, Addresses, Lengths and Step-by-step) and the other ones are repre-
sented by the letter 0. Thus, looking at the NE 803 control keyboard

The AS-language for the Elliott 803 computer 305

at the time of translation of an AS programme, we should have the fol-
lowing picture:

G00O0O0O
0000000000000C
ALO0OCOOO
0000000000008

Two keyboard loops are used by the translator. The first one, giving
a2 low and uniform loudspeaker sound, is the NORMAL WAIT used
to indicate that either double minus or a right bracket (denoting a block
end), or the programme END: has been read. The other keyboard loop,
giving a loud varying sound, is the ALARM WAIT used to indicate
that an error has been revealed in the programme. The ALARM WAIT
is preceded by a suitable error message giving some useful details on
the error (see 3.6). In any case the translator is made to go on by a change
of the G button. It is recommended to inspect the error message before
going on, to make sure that it is worth doing so (see 3.6).

When the 8 button is kept depressed, the translator comes to the
NORMAL WAIT each time a line (in the sense of the syntax table) is
read and translated. This is intended to assist in inserting or deleting
certain lines of the programme.

If the C button is kept depressed, the translator copies each line
of the programxme on punch 1. Unnecessary shifts, spaces, ¢r’s, If’s, blanks
and the words erased with a ? are removed (except in titles) from the
programme.

If the L button is depressed, then each time a block end is read
(other than the first one at the end of the directory) the translator
outputs on the teleprinter (or on punch 2, if direct output is not fitted,
or on punch 1 if punch 2 is not fitted) a message of the form

BLOCK £k SIZE »

where k is the block number of the block just read, and » is the number
of machine locations occupied by that block, not including the identifiers
declared under VARIABLES:.

If, on reading the programme END: or a block end, the 4 button
is depressed, a message of the form

BLOCK %
NAME1 DAl 0Al
NAME2 DA2 0A2

NAME» DAn OAn

306 Krystyna Sochacz and J. Szczepkowicz

follows the previous message; NAME 1, NAME2, ..., NAME#» are the
identifiers declared in the k-th block, and DA? is the absolute decimal
address assigned to the ¢-th identifier. QA7 is the octal version of the
same address. If n = 0, only the message

BLOCK %

is output. This indicates that no identifier has been declared in the k-th
block. The list of nonlocal identifiers is printed in the same manner with
k = 0 on reading the programme END:.

3.6. Error indications. All the error messages are printed on the
same output device as that used for name lists and block sizes. An error
message starts with

ERROR NO. m

where m is the number assigned to the error. This is followed by the last
line read by the translator; if m = 17 (see the error table), a label iden-
tifier is also printed. After the error message is completed the translator
comes to'the ALARM WAIT (see 3.5). The errors detected by the trans-
lator are divided into three types, named A, B, C. All errors of type A
or C can be corrected without retranslating the programme from the
beginning. To correct such an error, a rectified version of the offending
line has to be punched, followed by a double minus, and to be translated
as a next part of the programme. If the double minus is omitted, the
translator should be set to step-by-step operation (S button depressed).
The errors of type A and C may also be ignored to obtain the list of errors.

The errors of type B must not be ignored, as they usually cause
some important information on the programme to become ambiguous,
destroyed or falsified. All errors of type B should be corrected by appro-
priate change of the source programme and retranslating the whole from
the beginning.

The error table
NO. ERROR
Type A
. A syntactic error in a word, not caused by the use of symbolic addresses.
2. A number punched wrongly. '
3. An alphanumeric or octal group punched wrongly.
4. A ftitle violates the title syntax.
5
6
7

o

. An identifier spelt wrongly (or undeclared).
. A wrong symbolic address.)
. More than 70 characters in one line (except in a title or a copied group).

The AS-language for the Elliott 803 computer 307

Type B

10.. Improper use of storage' space: (e.g. a trial to overwrite the translator).

11. Too little working space. _

12. Working space not declared in a programme with symbolic addresses.

13. A standard word (i.e. VARIABLES: LABELS: WORKSPACE: END: BEGIN:)
spelt wrongly or an END: within a block with local declarations.

14. An identifier declared twice at the same level of nomenclature or the starting
character of an identifier is not a letter..

15. Missing BEGIN:.

16. Two or more words are labelled with the same identifier at-the same level of

nomenclature.
17. No possibility of completing a forward reference due to the lack of a labelled
word.
Type C
20. All other errors detectable by TU102. They are not listed explicitly as such a list
would ever be incomplete. The message printed by the translator is always suf-
ficient to identify the error.

Error no. 11 requires some discussion. If the assignment of addresses
to variables requires n locations and m locations are required for the
internal ‘purposes of the translator, then max(m,n) is the minimum
number of working locations which should be declared. In most of the
real programmes the number » is much greater than m and thus no
trouble arises. There may be, however, some long programmes with
only a few variables declared. In this case the knowledge of the number m
may be of value. It can be calculated as follows: let K be the number
of identifiers declared at the nonlocal level and K; the number of iden-
tifiers declared in the ¢-th block. Further, let F' be the number of non-
local forward references and F; the number of forward references local
in the ¢-th block. Then the number m is equal to

2K+ F+ max (2K;+F;).

This is because an element of a name list consists of two locations; the
first holds the name' itself and the second holds the address assigned
to the name. Forward references are handled simply: the relevant in-
struction is left incomplete, and an appropriate information is stored
in working space. This is one machine word- containing the following
details

(1) which part of the word is left incomplete,
(2) what is the address of the incomplete word,
(3) where the address, not yet known, will be found.

While a block end is being translated, this information is used to
complete the local forward references. An END: causes the same to be

308 Krystyna Sochacz and J. Szczepkowicz

done with the nonlocal ones. When a label is missing, this is easily detected
by inspecting the defined address and ERROR NO. 17 is displayed
together with the offending label name. Once processed, the local infor-
mation is deleted and the same storage space is used again for the next
block. It follows from experience with some practical big programmes,
that on a machine with 8192 store even a programme as big as the Elliott
Algol translator could be translated, if it were written in the AS language.

3.7. Modifying the translated programme. A temporary directory
can be used to modify the translated programme. Although some symbolic
information may be contained on the modification tape, the conditions
ensuring the correct effect are so severe that, for the sake of safety, rela-
tive and absolute addresses should be used throughout. Titles can be cor-
rected and replaced with no restriction. No difficulty arises provided
that name lists have been printed (button A of the word generator depres-
sed at translation time). Minor corrections can also be done via the control
keyboard; octal addresses contained on the name lists are then of great
value.

It follows from what was stated previously that a temporary direc-
tory, when used within a symbolic programme, may cause strange effects
if there is a connection of it with the forward references. To avoid errors
it is recommended to use temporary directories after the symbolic part
of the programme is completed.

3.8. The AS translator used as a subroutine. The translator can be
used as a subroutine in any other programme to read any of the following

(a) an instruction pair, with no symbolic address,

(b) an octal group,

(¢) an alphanumeric group,

(d) an integer constant,

(e) a fixed point fraction which will be scaled (in the sense of the
TI code) by the contents of the location 8028. The scaling factor is set
initially to 1, but it may be changed by any method available to the
operator or the programmer,

(f) a floating point number,

(g) a trigger which will be obeyed.

To read one of the above, the programme should contain the instruc-
tion pair

73 8068 : 40 7289
On exit the word just read is found in the accumulator. All the data

read are copied on punch 1 if C is depressed on the keyboard (see 3.5).
All copied groups encountered are also copied.

The AS-language for the Elliott 803 computer 309

The translator ean also be used to read a title. To do so, the address
of the first location to be occupied by the title should be placed in loca-
tion 7286, and location 8065 should contain the address of the first location
which cannot be overwritten. The title punched on the input tape should
conform the title syntax and a word of type (a)-(g) above should be
punched at the end. On exit the location 7286 contains the address of
the last character of the title plus one, and the accumulator contains
the final word just read. When the title is too long to be placed in the
specified locations, then ERROR NO. 10 is displayed.

When used as a subroutine, the translator ignores words of the form

0o or If

4. Complementary information.

4.1. Address assignment. The method used to assign addresses to
identifiers is best illustrated by the example below. Dots represent the
irrelevant portions of the programme.

9
WORKSPACE: 244—1000
+5
MAIN) +50
TU12) +100
T105) +132
VARIABLES: I, J, STACK(100), F1(100), F2(20)
LABELS: START, PART

)
VARIABLES: L, L1, I STACK1(100), FF1(10), F2(20)

BEGIN:

BEGIN:

310 Krystyna Sochacz and J. Szczepkowicz

If a programme with such declarations is translated with the A
button depressed (see 3.5), the following will be output:

BLOCK 1
I 471 00727
L 469 00725
F2 584 01110
L1 470 00726
FF1 573 01075
STACK1 472 00730
BLOCK 2
L 605 01135
M 606 01136
X 708 01304
Y 709 01305
STACK2 607 01137
BLOCK 0
I 244 00364
J 245 00365
F1 347 00533
F2 448 00700
MAIN 50 00062
PART 50 00062
T105 132 00204
TU12 100 00144
STACK 246 00366
START S 00005

4.2. The TU12 subroutine. This is a short (32 words) TI coded sub-
routine to print titles read and stored by the AS translator. Two entry
points are used..- We describe them by symbolic exemplification.

Entry 1.

73 TU12 : 40 TUI2+1 ,
$THIS IS A TITLE TO BE STORED IN CONSECUTIVE LOCATIONS
bl If

If entry 1 is used, the title following the entry instructions is output
on punch 1, and the link is increased by an appropriate number to pass
the control to the nearest location after the title.

Entry 2.

73 TUI12 : 40 TU124-2
: 00 TITADD

The AS-language for the Elliott 803 computer 311

It is assumed that somewhere in the programme there is a piece of the
form

TITADD)$THIS IS A TITLE TO BE STORED IN CONSECUTIVE
LOCATIONS b If

Thus on entry 2 the address of the title is assumed to follow the entry
instructions. Having output the title on punch 1 the control is passed
to the location link 2.

The first entry is intended to be used when a title is printed at one
point of the programme, while the second is of value when the same
title is to be output at many points of the programme.

The speed of TU12 on an 803 machine is not less than 96 characters
per second. A version of TU12, marked TU12(B), also exists and has
four entries to cope with the double Paper Tape Station. TU12(B) is
a little longer than TU12.

4.3. Making an absolute addressed binary tape. The 803 software
contains an item (T22/23) to cope with the task mentioned above. It is,
however, not very convenient to use, especially with the AS translator.
We have implemented a modification of T22/23, marked T22/23(KCRB),
which is a keyboard controlled relocatable binary tape. This tape can
be used independently of any other programme and is fully compatible
with T22/23. To input it to locations N onwards, and a part of it to the
last 33 locations of the store

40 0: 00 N

is to be set on the word generator and the machine operated. Then the
entry 40 N is used to produce in binary the contents of the specified
store locations, and entry 44 N is for checking the tape just produced.
All other operating details are just as those for T22/23. The modified
tape is by one word longer than T22/23; this is the first word and it con-
tains the instruction pair 40 N+477:40 N413 for reasons obvious to
any experienced operator or programmer of the NE 803.

5. Acknowledgement.

The concept of the AS language and the methods for its imple-
mentation are due to J. Szczepkowicz. These methods were elaborated
in detail by Krystyna Sochacz who also wrote the translator.

The authors are indebted to Dr. S. Paszkowski, head of the Nume-
rical Methods Laboratory (Wrocltaw University), for valuable discussions
on the AS language.

312 Krystyna Sochacz and J. Szczepkowicz

References

[1] K. E. Iverson, A method of syntax specification, Comm. ACM 7 (1964),
Pp. 588-589. .

[2] 803 Library Programme T2/102: Translation Input Routine, Supplied
by Elliott Bros. Ltd., England.

DEPARTMENT of NUMERICAL METHODS
WROCLAW UNIVERSITY

Received on 25. 4. 1967

Krystyna SOCHACZ iJ.SZCZEPKOWICZ (Wroclaw)

OPIS JEZYKA AS DLA MASZYNY CYFROWE] ELLIOTT 803
STRESZCZENIE

W pracy opisano jezyk adreséw symbolicznych AS opracowany i zrealizowany
przez autoréw dla maszyny Elliott 803 w celu uproszczenia prac zwigzanych z przy-
gotowaniem programéw w kodzie wewnetrznym tej maszyny. Istotne cechy jezyka
AS sg nastepujace:

1. Uzywany dotad kod TI maszyny Elliott 803 jest podzbiorem jezyka AS.

2. Stowo rozkazowe jezyka AS jest tlumaczone na jedno slowo rozkazowe
maszyny.

3. W jezyku AS mozna uiywaé nazw rozumianych tak, jak w ALGOLu.

4. Nazwy w programie moga byé opisane jako zmienne lub etykiety. Etykiete
mozna umies$cié przed kazdym slowem rozkazowym, przed kazda stala i tytulem.

5. Obszarem dzialania nazwy moze byé caly program albo tylko pewien jego
fragment zwany blokiem. Umozliwia to np. korzystanie z podprogramu (napisanego
w jezyku AS) bez zadnych ograniczen dla nazw uzywanych w pozostalej czesci prog-
ramu.

Praca zawiera opis skladni jezyka AS w postaci formul skladniowych Backusa-
Naura, skréconych metoda Iversona, oraz istotne szczegély dotyczace translatora
dla tego jezyka.

Kpuernia COXAY n V. IETIKOBM Y (Bponaas)
OIMMCAHHME S3bIKA AS AJIA BBIYMCJIUTEABHOM MAIIMHBI NE 803

PE3SIOME
B pabGore ommucmBaercA A3HK cumOoiuM4YecKNX apxpecoB AS, paspaboTaHHHIl

aBTOpaMu JiA 00JerdeHUA NOATOTOBKHM IPOrpAaMM B MAIIMHHOM KOZe BHIYMCINUTENLHOMN
mamuHel NE 803. OcHOBHEIe CBOHCTBA 3TOro fABHKA CIERYIOINUeE:

The AS-language for the Elliott 803 computer 313

1. Kog TI mamman NE 803, xoropsiit ymorpebasicAa g0 CHX NoOp, ABRAETCA
MOAMHOMECTBOM A3HKa AS.

2. JIwoGoit KoMaHfe A3HKA AS COOTBETCTBYeT OfHA MAIIMHHAA KOMAaHAA.

3. B sAsmke AS HCHOIBBYIOTCA HAEHTHOHKATOPH ONpefeséHHHE TaK Kak
B AJUT'OJIe.

4. Npentudurarops MOTyT OHTH ONMCAHHL KaK IlepeMeHHHE MU MeTKH. BcAakas
KOMAHZA, KOHCTAHTA HMJY TEKCT MOMET IMeTh METKY.

5. JIo6oit uaeHTNPUKATODP MOKET OHTH riI06albHEIM B NpOrpaMMe MJM JIOKA-
JM30BalHKIM B HEeKOTOpPO#l uacTm mporpaMmMn — B Guoke. ITosTomy mommporpamma
MOs;keT OHTL HCHIOJb30BaHA B NMPOM3BOJLHON mporpamMme Ges uameHeHUit MOeHTUPHU-
KaTOPOB C 3TO} NIPOrpaMMH.

PaGoTa comepUT CHHTAKCHNYeCKoe onmucaHue A3bKA AS meromom Bakyca-Haypa,
COKpAINEHHHM MeTORoM lJBepcoHa, M HEKOTOpHE BAaKblHE CBOIICTBA TPAHCIATOPA
C 3TOTO0 A3HIKA.

