ZASTOSOWANIA MATEMATYK1
APPLICATIONES MATHEMATICAE
XVIII, 1 (1983), p. 97-105

J. 8. KOWALIK (Pullman, Wash.), S. P KUMAR (Coral Gables, Fla.)
and E. R. KAMGNIA (Urbana-Champaign, 1L.)

AN IMPLEMENTATION OF THE FAST GIVENS TRANSFORMATIONS
ON A MIMD COMPUTER

1. Introduction. By introducing simultaneous execution it is possible
to design computers that can operate faster than conventional machines.
SeYeral super fast computers utilizing this principle have already been
buils, Among them CRAY-1, CDC STAR, ILLIAC IV, and STARAN-IV
are Perhaps best known. Recently a new parallel computer called HEP
(heterogeneous element processor) has been made available. This is a MIMD
Machijpg (multiple-instruction multiple-data) or, more specifically, a re-
S(?uree sharing computer as defined by Flynn [1]. HEP is able to execute
different, instructions upon multiple’ data streams simultaneously, unlike
vector or array processors which can handle many data streams at the
Same time but can only execute the same instruction on all the data streams.
Fig. 1 illustrates this capability of a MIMD computer.

The HEP machine consists of process execution modules (PEM’s),
Program memory, and data memory modules. Each PEM has 2,048
Interng) general-purpose registers. All data and instruction words are
64 Dits long. In the future configuration there will be up to 16 PEM’s
ad datg, memory modules. All data memory modules will be accessible
%o all PRy via a high-speed data switch network. Currently, the HEP
Machipg consists of one PEM (*), program memory, and a set of general
p}l "Dose registers. One PEM executes a maximum of 10 million instrue-

}Ons ber second (MIPS). It can concurrently process from 1 to 8 instruc-
tion Streams at the rate of 1.25 MIPS per each stream. It is significant
.to Point out that the HEP machine does not degrade its performance
Whether it, operates on vector or scalar operands. This is in contrast to array
Machines whose performance is sensitive to the length of processed vectors.

Tom the logical point of view (or a programmer view) the current

configuration can be regarded as composed of p < 8 interconnected

Pl‘Ocessors which cooperate and simultaneously process up to 8 streams

a fou(l) The HEP computer as described in the paper has been now extended to
* PEM configuration. [Note added in proof]

T~ Zastos, Mat. 18, 1

98 J. 8. Kowalik et al.

of instructions. A more detailed description of HEP and its target con-
figuration can be found in [8].

In this paper we investigate the fast Givens transformations which
can be used to solve square and rectangular systems of algebraic linear
equations. First we assume that there is available an unlimited number

DATA SOURCE

N E r,
A |B C {0
PEM
with N ~
different
function
units
LA N J
A+B C#D
ADD MULTIPL
DIVIDE ADD
ADD ADD
RANCH DIVIDE
: : e o @

PROCESS t PROCESS 2

JInstruction streams (conceptual processors)
Fig. 1. A MIMD computer

of processors and show that a system of n linear equations A& = b can
be solved in T, = 11n—15 steps using p = O(n?) processors, where one
step is equivalent to one arithmetic operation. This part of our analysis
is akin to earlier results by Sameh and Kuck ([6], [7]). Then we postulate
only O (n) processors and present a practical parallel algorithm which was
programmed and executed on the HEP parallel computer.

2. Fast Givens transformation. To describe the use of fast Givens
transformations, consider first a (2 x k)-matrix B which is scaled by
a diagonal matrix D = diag(d,, d,), d,, d, > 0, and A such that 4 = D'*B.

Fast Givens transformations 99

If we wish to eliminate the element A,, of A, we can form the matrix
G and use the standard Givens transformation

GA=[o S]A,
—8 ¢

Where ¢ = Aynfry 8 = Ayfr, and r = (4], +A§1)1I2-

Alternatively, we may work with D and B separately and use an
orthogonal transformation on DY?B implicitly. This approach, due to
Gentleman [2], is commonly known as the fast Givens transformation.
One step of this transformation consists of the following calculations:

=B21, ﬂ=ﬁa, and ¢ = af.
Bll

a

Now the matrices D and B are replaced by

o . e o 1
D = dlag(dl, dg) = mp
and

(1) 1§=[_(11 ‘:]B=HB.

The scaled plane rotation matrix H is the fast Givens transformation

Matrix. If @ is the standard Givens rotation matrix applied to A, then
the relation between ¢ and H is

(2) G = DV*HED "2,

The matrix 4 ig replaced by GA = D*HD*D'*B = f)llzﬁ. It is

straightforwarg to verify that @ in (2) is an orthogonal matrix.
From (1) we ges

(3) -ﬁu = Bu(l"‘t)’
En = 0:

~

Bli = B1i+ﬂB21‘) Bzi = Bzi_th' 2<i< k).

_ .As can be seen, the transformation requires approximately 2k mul-
tiplications and additions, and square roots are not needed.
Rewriting the formulas for d, and d, we obtain

~ d? B! « d,d, B
d, = ———— and d, = e E
dl Bll + d2 B2l dlBll + d2B21

2
_TO Preserve numerical stability of the factorization, an operation
€quivalent to row interchange is required. This results in two alternative

100 J. S. Kowalik et al.

forms of H. One is as in (1) and the other is

_|8 1
(4) H —[-—1 1/a]'
The transformation matrix H defined by (1) is applied if [¢] > [s] o)
equivalently,
(5) d, B}, > 4, B;,.
In this case B,, is computed from (3):
~ d,B:
B,; = By (1+ ijz)

It (5) does not hold, then the transformation matrix is defined
by (4) and

" d,B?
Bn =le (1+ ! 11)

dy B3, |

The formulas to calculate d,, d,, B,;, and B,, for 2 < i < k are appro”
priately modified.

Furthermore, periodic rescaling of D and H has been implemented
to avoid underflow or overflow in D. The reader interested in details
of the numerical implementation of the fast Givens method is referred
to [4] and [5].

To solve the system of linear equations A& = b, where A is a noV”
singular matrix »n X n, we proceed as follows:

(i) factorize the augmented matrix [4, b] using fast Givens tran$

formations, i.e., compute D R, and b such that Q[4,b] = D'*[R, b
where R is upper-triangular, @ is the product of all orthogonal transforma’
tions required to triangularize 4, and D is diagonal;

(ii) solve Rx = b.

Note that square roots are never computed; neither is explicit!y
computed the matrix Q.

3. An algorithm using O (n?) processors. It can be easily shown that
having 2(k+1) processors which perform arithmetic calculations simul’
taneously we can eliminate one element of B (such as B,,) in 4 step*

Let A be a non-singular square matrix of size n. The sequentif"1
Givens transformations annihilate the subdiagonal non-zero elements ¢
A one at a time, while preserving all previously introduced zeros. Thi®
annihilation process can be performed columnwise and for cach colum?
1of A as many as n—1 plane rotations are required. In a parallel algorith®
more than one Givens rotation can be performed at the same time.

One possible scheme of annihilation is shown in Fig. 2. Numbe?
in Fig. 2 show the sequence in which the elements of A are annihilated"

Fast Givens transformations 101
For instance, the fifth transformation consists of 3 simultaneous rotations
and eliminates 3 subdiagonal elements of 4. The total number of parallel
transformations is 2n—3, e.g., for n = 6 we have 9 transformations.

Thus the orthogonal factor is @ = Q,,_sQs_, --- Q,Q,, Where @,
k=1,2 .«.32n—3, is a parallel transformation representing one or

* *

1| = 1| %

2| 3| = 112 | %

3|4 ()| * 1]3)4]|x%

4 O] e|7|* 214 |s5|6|x*
@Q?Bg* 3|s|6l7|8] =%

Fig. 2. Annihilation pattern

for a square matrix, n = 6.

Elements in the circles iden-

tlf? the transformation re-

quiring the maximum num-
ber of processors

Fig. 3. A slightly better
elimination pattern

quires o taneous rotations. Since the entire annihilation scheme re-
and § {;’“3 Parallel transformations, the total time to calculate D, R,
¥ this parallel Givens algorithm is T, = 4(2n—3) = 8n—12

and g time may be required to scale periodically the matrices

can "rl(;];ef elimination pattern shown in Fig. 2 is not optimal. The reader
m atrixl Y that we can use one less transformation to triangularize a square

of size 4 — .
The n = 6 (Fig. 3).

8peedy sequential algorithm requires T, = 4-37'n3+0(n?) steps. The
3 O(n)P S, achieved by the parallel algorithm is S, = T,/T, = 67'n?+
torize .ATO calculate the maximum number of processors needed to fac-

annih] . e assume for simplicity that » is even. It follows from the
ation pattern (see Fig. 2) that

n/2—1
3 3
P =2 2 (n4+1—1t) = Zn2+ -En
t=0

is 3 ,']i(ilfaftoﬁze [4, b] in the time T, the number of required processors
" +5-27'n. The efficiency for sufficiently large values of m is
. P = R,[p = .22. This low efficiency is due to the limited use of processors

m Sty e
the initial anq the final stages of the Givens transformation process.

102 J. S. Kowalik et al.

We now return to the problem of solving the linear set of equations
Ax = b, where A is n xXn. After [4, b] is factorized, we have to solve
the triangular system Rax = b, and this requires 3(n—1) steps using
n —1 processors, if we apply, for instance, the column sweep algorithm [3].
Thus, the total time for solving Ax = b by this parallel fast Givens
transformation followed by the column sweep method is approximately
T, = (8n—12)+(3n—3) = 11n—15.

4. An algorithm using only O(n) processors. We focus our attention
on the case where the number of available processors is p = [(n—1)/2]
and assume that Givens rotations are performed sequentially. In fact, if
Givens rotations are sequential, it is not possible to use more processors
than [(n—1)/2] since each rotation requires two rows of A. Let T} be
a computationally indivisible task defined by T} = GIVENS (¢, j), where
GIVENS(i, j) is a subroutine call that rotates rows ¢ and j and eliminates
the (j,7)-th element of A. With each task T} there are associated two,
possibly overlapping, ordered sets of memory cells, the domain D, and
the range R,. When T; is initiated, it reads the values stored in its domain
and writes values into its range cells. We say that two tasks T' and T
are non-interfering if either (i) or (ii) holds:

(i) T is a temporal successor or predecessor of i',

(ii) RpNRp = R, NDs = DpNR; = @ (empty).

A set of tasks is said to contain mulually non-interfering tasks if
T} and T} are non-interfering for all indices 4, j, !, and k which belong
to the set. The transformation matrix @, 1 <k < 2n—3, consists of
tasks

Ti1<i<n—-1,i<j<n, i+j=k+2, k=1,2,...,2n—3}

which are mutually non-interfering and can be executed in parallel for
each k.

Any algorithm triangularizing the matrix 4 must include the con-
dition that no new non-zeros are reintroduced in the process of rotation.
This means that all tasks have to obey the following precedence constraint:
T} is completed before T; can begin for all I < 4. The annihilation scheme
we implement follows the pattern of Fig. 2 which means that another
precedence constraint is enforced: T; is completed before T; can begin
for all I > j. The pair consisting of the set of tasks T and the partial
order representing temporal precedence constraints is called a task system
which can be conveniently visualized as a directed acyclic graph with no
redundant (transitive) arcs. The task system of the Givens transformation
problem is shown in Fig. 4.

The longest (critical) path in this graph is

8 ={T3, I3y .y T0y Thy ..y T}

Fast Givens transformarions 103

and since the time length of T;' is L(T}) =4(n—1+1)+7 steps, we get
L(8) = 6n2+8n—25 steps, where one step corresponds to one arithmetic
operation. The value of L(S) determines the best possible execution time
of the considered task system. This execution time can be achieved with
D =[(n—1)/2] processors. There are several possible schedules and the

@ Processes

(or processors)| *
®.® 1 "
*
-6

S *

Fig. 4. Precedence graph for tasks T;

Fig. 5. Scheduling scheme for
p=[7-1)/2]1 =3

90€ we have selected is shown in Fig. 5. In this schedule the processors
Are assigned to the tasks as follows:

Processor 1: tasks T%, T%, T%, ..., T"},

Processor 2: tasks T, T!, T2, ..., T"~

» I general, the processor P;, 1< j < [(n—1)/2], executes the tasks
i 25419 T3y ..., T*2%+1 To enforce the partial order temporal con-
Straints the processors have to be synchronized. For example, the pro-
¢essor P, should not start T? before the processor P, completed T,, and
ﬂte Processor P, should not start T} before the processor P, completed
T;. 1t i also necessary to create mew processes at different times. For
“Xample, for the scheduling scheme presented in Fig. 5 the process 1
Starts first ang executes the tasks T} and T;. Now the second process is
reated since 71 and T? can be executed in parallel.

.. The majn synchronization mechanism in the HEP Fortran language
s t.hat of the well-known producer-consumer synchronization using busy
Walting, This mechanism is realized via the so-called asynchronous varia-
bles, the names of which begin with a special symbol. Each such variable
4R be in g gtate FULL or EMPTY. The reading may only take place

When the state of a wvariable is FULL and writing (assignment) may
only take Place when the state is EMPTY. Writing an asynchronous

variable always sets the state to FULL and reading sets it to EMPTY.
The Producer-consumer synchronization consists essentially of the two

and
1

104 J. 8. Kowalik et al.

conditional actions: (i) wait until EMPTY and then write, and (ii) waib
until FULL and then read.

The second aspect of synchronization which is creating a new process
is accomplished in HEP Fortran by an instruction called CREATE.
CREATE initiates a parallel instruction stream which will terminate
when a RETURN statement is encountered. Using these programming
facilities we can fully control the execution of a MIMD parallel program.

TABLE 1. Actual (4) and predicted (P) speedup and efficiency.
Execution time is measured in seconds

n) T, T, 8y Ep

5 2 .0036 .0025 i:iﬁ ;’f, ﬁ

" 3 .0087 .0045 i:gg :gi 113

9 4 .0168 .0072 323 :2-81 ﬁ
10 5 .0222 .0087 Zgg g(l, ;
11 5 .0286 .0105 g;z :g: ﬁ
13 6 .0448 .0146 g:‘l’; g; 1‘3
15 7 .0660 .0194 g:‘zf ::Z ﬁ
17 8 0927 0256 iﬁﬁf :gg ;

The discussed Givens method was programmed and run on the HEP
computer. Since for this machine 1 < p < 8 and in our algorithm we use
p = [(n—1)/2] processors, we have triangularized several matrices with
n < 17. Table 1 summarizes the predicted and actual values of the speedup
S, and efficiency E,. The predicted values are calculated from the relations

T, 4-37'n 4+ 0 (n?) 2 S 4 n
S = — = ~ — d E — P —_ — .
» =T 612+ 0 (n) g " M T Ty

The actual values were obtained by timing the HEP runs.

The small differences between the predicted and actual values of
S, and E, can be attributed to machine time required for CREATE
statements, extra synchronization variables used in the program, DO-loop
control, data dependent scaling operations in the Givens subroutine, and
other program overhead items which are not accounted for in our formulas.

Fast Givens transformations 105

In the bresent HEP configuration it is not meaningful to consider a loss.

oL ti
e due to the processor-to-processor or processor-to-memory com-
Munjeation,

A.dmowled.gement. We express our thanks to Dr. R. Lord of the
W ashington State University for his helpful comments and to the reviewer
08¢ remarks have helped to improve the quality of the paper.

References
[2. J. Flynn, Some computer organizations and their effectiveness, IEEE Trans..
2] g;mputers C21 (1972), p. 948-960.
-M. Gentleman, Least squares computalion by Givens transformations without
3 Square roots, J. Inst. Math. Appl. 12 (1973), p. 329-336.
J. Kuck, A survey of parallel machine organization and programming, Comput.
I g“TVeys 9 (1977), p. 29-59.

19'}; Lawson and R.J. Hanson, Solving least squares problems, New York
=~ D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for FOR-
0 iRAN usage, Report SAND 77-0898, Sandia Laboratories, Albuquerque 1977.

- H. Sameh and D. J. Kuck, Linear system solvers for parallel computers, Internal
[Teport, Dept. of Computer Sci., Univ. of Illinois, Urbana-Champaign 1974.
8]]; On stable linear system solvers, J. Assoc. Comput. Mach. 25 (1978), p. 81-91.
-J. Smith, A pipelined shared resource MIMD computer, p. 6-8 in: Proc. 1978
Interna.t. Conference on Parallel Processing, Long Beach, Cal., 1978.

[5)

W
pUASHINGTON STATE UNIVERSITY UNIVERSITY OF ILLINOIS
LMAN, WASH. 99164 URBANA-CHAMPAIGN, ILL. 6180%

U
ogIIlVERSITY OF MIAMI
AL GABLES, FLA. 33124

Received on 15. 4. 1980;
revised version on 3. 11. 1980

