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It is known that examples of countable locally connected Hausdortf
spaces are rare and most of them are obtained by artificial constructions.
In a recent paper, Jones and Stone [3] constructed countable connected,
locally connected T,-spaces for each countable ordinal a. (Here the sepa-
ration axiom T, is stronger than the usual Hausdorff axiom for a >1.)
They asked (see [3], P 707) whether the Urysohn space constructed by
them is homogeneous. In section 2, we give a negative answer.

In section 1, we give one more collection of examples of such spaces.
We prove that the set of all strictly increasing sequences of a finite odd
length in a connected space becomes a locally connected space under
some mild conditions and a curious topology.

We deduce that, for each ordinal a, there are plenty of countable
connected, locally connected T,-spaces — as many as there are countable
spaces. '

For a detailed information about local connectedness in countable
spaces, we refer to [4].

1. A locally connected topology on a set of finite sequences. Let X
be a countable connected Hausdorff space such that X\ A4 is connected
whenever A is a finite set (e.g., X may be the space of Bing [1] or the
space of Brown [2]; in fact, there are plenty of such spaces (cf. [4])).
By a pre-assigned one-to-one correspondence of X with the set of natural
numbers, we give a well ordering for X. This allows us to talk of increasing
sequences of elements in X. We denote by L(X) the set of all those strictly
increasing finite sequences of elements in X for which the length is odd.
We shall presently prove that L(X) is a connected locally connected
extension of X under a well-specified topology. We shall also show that
many nice topological properties are preserved by this extension process.

Note that a general element of L(X) is of the form

@ = (Zyy Xgy evy Lapy1)s
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where each x;¢ X and , < #, < ... < &,,,,. Let U be a basic neighbourhood
of z,,,,in X. Then we define a subset aU of L(X) as follows: aU is the set
of all elements of the form

(Z1y oy eeey Bapsy Y19 Y25 ooy Yame1)

satisfying one of the following two conditions:

(1) Yymir¢ U and, for each 1 <1< m, at least one of the two terms
Yyu_, and y, belongs to U;

(2) there exists an integer k with 1 << k << m such that both y,,_, and
Y. belong to U and such that, for each I with 1 <1 <k, at least one of
the two terms y,_, and y, belongs to U.

The following are easily noted:

1. aeal.

2. If V < U, then aV < aU.

3. If BeaU and is of the first type, then U < aU.

4. If Be a and is of the second type, then BV < aU for any V for
which BV is defined.

These facts show that {aU | ae L(X); U is a basic neighbourhood
of the last term of a} is a base for a topology on L(X). This is the topology
that will be proved to have the above-mentioned properties.

ProproSITION 1. L(X) ¢8 a Hausdorff space.

Proof. Let a = (v,, @5y ..., Ty, ,,) aDd B = (Y1, Y2y --+5 Yomy1) D€ any
two distinet elements of L(X). We want to show that they can be sepa-
rated by disjoint open sets. We assume, without loss of generality, that
n < m.

Case 1. Let x; +# y; for some 7 << 2n. Then aU and BV are disjoint
for any choice of U and V for which they are defined.

Case 2. Let m > n and let neither y,,,, nor y,,,, be equal to z,,,.
Then choose a basic neighbourhood U of z,,,, that aveids both ¥,,.,
and ¥,,,.. Then aU and fV must be disjoint for any choice of V such that
BV is defined.

Case 3. Let @y, , 7 Yam41, i-€., the last terms of a and g are different.
Then choose two disjoint open sets U and V that are neighbourhoods
of x,,,, and y,,,,,, Tespectively. We claim that aU and gV are disjoint.
Let ye aU NPV if possible, say, y = (¢, tzy ..., tyeyq). Since U and V are
disjoint, at least one of them must avoid t,,,,, say, t,,,,¢ U. Since yeaU,
this implies the existence of an integer k such that 1 <k < s and t,_,
and ?,, are both in U and such that at least one of ¢,,_, and ¢, is in U for
each 1 <! < k. This, in turn, means that, for each I, 1 <1<k, it is not
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true that both ¢,_, and i, are in V; moreover, it also implies that neither
ty—y DOT &y, is in V. These Tesults imply that y cannot be in gV, a contra-
diction.

Now we show that these three cases exhaust all possibilities. If m = n,
it is clear that either case 1 or case 2 must hold. So, let m > n. If case 2
does not hold, then either ¥,,,, = @41 OT Vs 2 = Zop,,. INn either case,
Yam41 Must be greater than x,,, , and so case 3 occurs.

PROPOSITION 2. Let o = (Zy, X3y ..., Ty,) be a Slrictly increasing
sequence of elements in X that has the even length. Then there exvists a map
fo from the set

Ay = Ty} Vi{ve X |2 > 2,,}

to L(X) such that f, is a homeomorphism of A, onto a subspace of L(X).

Proof. Take
Jo(Tan_1) = (@1y Tay ooy Typ_gy Tan_1)y
Jo(Zap) = (X1, T2y ooy Byp_gy Tgy),

Jo @) = (T4, oy evy Top_gy Top_1y Topy @) i ¢ {Tyy 1, Typ}-

Clearly, f, is one-to-one.

The continuity of f, follows from the observation that, for each
basic open neighbourhood aU of « in f,(4,), it is true that U = f;'(aU).
The openness of f, follows from the observation that if U is a neighbourhood
of z,,_, or z,,, then

fa(U) = alU nf,(4a),

where a equals f,, (z,,_,) or f, (2,,), respectively; and if U is a neighbourhood
of v (¢ {®yn_,, %5,}) DOt containing x,,_, or z,,, then

fo(U) = aUnf,(4,), where a =f, ().

Since the set 4, is connected (by the assumption, the complement
of any finite set in X is connected), we have

COROLLARY 3. The range of f, is connected.
PRrROPOSITION 4. The space L(X) is commected.

Proof. First, note that if a = (x,2,,...,2,,,,) is an arbitrary
clement of L(X), then it follows from the previous proposition that there
is a connected set containing a and the point (z,, z,, ..., #,,_,).- Repeating
the argument » times, we see that the connected component of a contains
the point (z,). But we easily see that the map #+>(x) is a homeomorphism
of X onto a subspace of L(X), and so its range is connected. All these
facts together prove that if («,)e L(X) is fixed, then every point of L(X)
lies in the connected component of (z,). Hence L(X) is connected.
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PROPOSITION 5. Every basic open set aU of L(X) is connected.
Proof. First, we note that if

Y1 = (Z1y Loy oo vy Topy Y1y Y25 + 9 Yoms U1)
and

Yo = (L1y Loy «ovy Topy Y1y Y23 -+ oy Yomy %2)

are two elements of aU in this form, where %, and u, belong to U and
%; < U4, then they lie in the same connected component of aU. This follows
from Proposition 2 when we observe that

fo(dy,) € aU i o = (@1, Bay ooy Bany Y19 Yoy -3 Yamy Uny Ys)-
Secondly, if
Y1 = (B1y Tay ooy Tony Y1y Y2y -5 Yams %1)
and
Vs = (L1y oy vy Lany Y15 Y25 « o3 Yam—1)

and if y,,_,¢ U, then y, and y; are in the same component of aU. This
follows from the fact that y; is in the closure of the set of all elements of
the above-given form y,. The similar assertion holds for y, and y,, where

Vo = (®1y Zay eooy Tony Y15 Y29+ oy Yom—z9 Yom) -
Thirdly, if

0 = (L1, Loy ooy Doy Y1y Y25 +vvy Yomy1) € @U

is such that y,,,,,e¢U, then there exists an integer k such that both y,,_,
and y,, belong to U. If we set

® = (Lyy Loy ooey Tony Y1y Y21y -3 Yom) s

it follows that f,(4,) = aU and so é and

01 = (®1y Tay ooey Topy Y15 Y2y ooy Yom—_1)

are in the same connected component of aU.

These three facts together with the principle of induction prove that
any element of aU belongs to the connected component of a in aU. Thus
aU is connected.

Let a be an ordinal number. A topological space X is said to be a T-
8pace if, whenever x and y are distinct elements of X, there exists a transfi-
nite sequence {U;|pf < a} of open sets such that xe¢U,;, ye X\ U, and
U, < U, whenever § < ».

THEOREM 6. Let X be any countable connected Hausdorff space in which
every finite-complement subset is connected. Then the space L(X) of all
strictly increasing finite sequences of odd length of elements in X is a connected,
locally connected Hausdorff space. Further,
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(1) X and L(X) have the same cardinality, weight and local weight;

(2) of X satisfies the separation axiom T, for some ordinal a, then so
does L(X), and conversely;

(8) X is homeomorphic to a closed subspace of L(X);

(4) X s regular at a point if and only if L(X) is regular there.

Proof. We can easily prove (1). The map z+— (x) can be seen to be
a homeomorphic embedding of X in L(X) and its range is easily verified
to be closed in L(X). (2) and (4) can be proved by straightforward methods.

Remark. Jones and Stone [3] have proved that, for each countable
ordinal a, there exists a countable connected, locally connected T',-space.
We can prove

THEOREM 7. Let a be any countable ordinal. Then there exist 2° distinct
topological types of countable connected, locally connected T,-spaces.

Proof. Let X be any countable regular space and let a be any count-
able ordinal. Since X is zero-dimensional, it is a T,-space. For each pair
of points #, ¥y in X, take a copy X, , of X with f, ,: X—X_,, a homeo-
morphism. Keep X and the copies X, , pairwise disjoint and then identify
pairs of points: for each z in X, « is identified with f,,(x) for every y
in X ; similarly, each y in X is identified with f, , (y) for each x in X. Denote
the new space by X,. Note that X is embedded in X,.

Repeat the same process with X, in place of X. We get a bigger
space X,.

Thus, by induction, we get a direct limit of spaces X, and homeo-
morphic embeddings of X,, in X, whenever m << n. Let Y be this direct
limit. Then it can be proved that Y is a countable connected T',-space
containing X as a subspace and that if A is any finite subset of Y, then
Y\ A is connected.

Let L(Y) be the space constructed from Y as described earlier. Then
L(Y) is a countable connected, locally connected T,-space containing X
as a subspace.

Thus we have shown that every countable regular space is a subspace
of a countable connected, locally connected T',-space, where a is an arbitrary
countable ordinal.

The assertion of the theorem now follows from the fact that there
exist 2° mutually non-homeomorphic countable regular spaces, whereas
a countable space can have at most ¢ types of subspaces.

2. On a question of Jones and Stone. Jones and Stone [3] constructed
an example of a connected locally connected Urysohn space X. They
asked (cf. [3], Problem 707) whether their space X is homogeneous. They
guessed that the odd points of X look different from the even points
of X and hence expected a negative answer. In this section we prove

7 — Colloquium Mathematicum XXIX.1
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that the answer is negative, as they expected, but not because of the
difference between odd and even points of X. We show that the points
of lowest level are different from the points of higher levels.

For the sake of completeness, we include a description of their space X
here. First, we describe the space S(a, b). Let {X, | n =0, +1, +2,...}
be a collection of disjoint subsets of the real line R such that each X, is
a countable dense subspace of R. Let the underlying set of S(a, b) be

{a, b} U( G Xn)7

n=—o0

where a and b are two extra points. For each ¢ > 0, write

( X, N(x—¢&,x+¢) if xe X, and n is even,
(Xp X, uX, )N(r—e,x+e) if ve X, and » is odd,
D,(v) =4 U X, if 2 = a,
n>1l/e
U X, if  =b.
n<l/s

Then these D,(z)’s define the neighbourhood bases of a connected
Hausdorff topology on the countable set S(a, d).

We take G, = E,, homeomorphic to S(a, b)\{a, b}.

For each pair (p, q) of points of E,, we take a copy E,(p, q) of the
space S(a, b) and identify its special points with p and ¢, respectively.

We let G, be the union of E with all these E,(p, q)’s attached as
above.

Suppose we have already defined @G,. To each pair (p, q) of points
in G,\G,_, such that p, ge E,(r, s) for some r, 8¢ G@,_,, we attach a copy
E, . .(p, q) of S(a, d), identifying its special points with p and q. We let
G, ., to be the union of @, with all these E,_ ,(p, q)’s attached as above.

We let X to be the union of all G,’s. For each z¢ X, there is a unique n
such that re @,\G,_, and a unique copy E,(p, q) of 8(a, b) such that p
and ¢ belong to G,_, and e E,(p, q).

Given ¢ >0, we define N,(x) to be the smallest subset of X such
that

(1) .N,(.’;U) = -Dc(‘/‘v) in En(?’ q);
(ii) if 4> » and r and se N,(z), then E,(r, 8) = N, (z);

(iii) if 4> n and re N,(z), then N,(x) > D,(r) in every copy of the
form E;(r, 8) homeomorphic to S(a, b).

These N,(x)’s define a connected locally connected Urysohn topology
on X.

THEOREM 8. The countable connected, locally connected Urysohn space X
constructed by Jones and Stone [3] is not homogeneous.
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Proof. We show that the elements of E, are unlike the elements
of X\ E,. More precisely, we show that if x,e¢ Fy, and z;¢ X\ E,, then no
self-homeomorphism of X can take x, to z,.

It is obvious from the construction of X that each element re X\ E,
belongs to some E;(p, q), where E;(p, q) is homeomorphic to S(a, b) and
is not locally connected at x. We show that no xe E, has this property.
In other words, we show that

If xe Ey and if A ¢ X is such that xe A and A is homeomorphic to
S(a, b), then A i3 locally connected at .

In order to prove this, we introduce a simple notation for the sake
of convenience in the proof. If ¥, and y, are two distinet elements in E,,
then we define {y,, y,}* to be the set of all elements that lie strictly above
them in X. More precisely,

{1, ¥2}" = U{N.(y) | € >0;ye By (yy, ¥s)}-

Analogously, we define {z,, 2,}* for each pair of distinct elements 2,
and z, that lie in E,(y,, ¥»)-

Now to the proof of our claim. Since A is homeomorphic to S(a, b),
it has exactly two points, say, p and ¢, where it is locally connected.
We want to show that x is one of them. Supposing the contrary, we show
that we are led to contradictions.

First, we observe that A\F, is non-empty, since 4 is connected
whereas E, is totally disconnected. Secondly, we note that AN\ E, is open
in A, since E, is closed in X. These together imply that A\ E, is infinite.
Now

X\NE, = U {?/17?/2}*'

V1, ¥3¢Ey

Therefore, A\ E, must meet {y,, y,}* for some y, # y, in E,.

Suppose AN\E, meets {y,,9y,}", where ¥,,¥y,¢E,, ¥, #y,. Then
consider AN\{y,, v.}. If {y,, ¥} # {p, q}, this is connected and hence
contained in {y,, ¥,}*, since {y,, y,}* is closed and open in X\{y,, y,}.

This last observation will be used more than once in what follows.
We divide the proof into two cases, in both of which we arrive at contra-
dictions.

Case 1. Let both p and ¢ belong to E,. Then, by the above-mentioned
observation, A\E, cannot meet {y,, y5}* for any {y,, .} # {», q}, where
Y1, Yo By. Therefore, A « E,u{p, ¢}*. By our assumption, z¢ {p, q}.
Now, E, is zero-dimensional. Therefore, there exists a closed and open
neighbourhood W of z in E, which avoids both p and ¢q. Then A "NWis
closed in A, since W is closed in F, and hence in X. Also E, u{p, ¢}*\W
is closed in X and so AN\ W is closed in A. Thus A NW is closed and open
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in A. It is neither empty (since ze¢ A NW) nor the whole A (since p¢ A NW).
This contradicts the connectedness of 4.

Case 2. Let case 1 do not hold (i.e., at least one of the elements in
{p, q} is in AN\E,;). Then, by the observation, we see that there exist
Y1, Yo in E, such that AN\{y,, ¥,} < {y,, ¥,}*. Since ze 4, this implies that
xe {yy,¥Ys}. Thus A < {&, y} u(x, y}"* for some ye E,.

Now we repeat our argument in the second level. First, observe that
E,(x, y)\{z, y} is totally disconnected, but A\ {z, y} is connected. There-
fore, ANE, (2, y) is non-empty. It is open in A, since F,(z, y) is closed
in X. Therefore, it is infinite, since A is connected.

Analogously to the observation, we see that if z,, 2,¢ B, (z, y)\{z, ¥}
and if ANE,(x,y) meets {z,,2,}", then either {z,,2,} = {p,q} or 4 c
{21, 22} U {21, 2,}". But the second case is impossible, since e A. Therefore,
we get that both p and ¢ belong to E,(x, y) and A\E,(x, y) is contained
in {p, ¢}*. Now, the set A\{z, y} is connected and is contained in C u
u{p, ¢}, where C is the zero-dimensional set E,(z,y)\{z,y}. Arguing
as at the end of case 1, we see that if C is non-empty, we are led to a con-
tradiction with the connectedness of A\ {x, y}. Therefore, C must be empty
and hence AN\{z,y} = {p, ¢}*. This is again impossible, since # would
then be an isolated point of A.

Thus, in both cases, the assumption that z¢ {p, ¢} leads to contra-
diction. Therefore, z¢ {p, ¢} and this completes the proof of our claim.
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