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Existence theorem for functional-differential
contingent equations

by M. KistELEWICZ and T. JANIAK (Zielona Goéra)

Abstract. An hereditary system is a system whose present state is determined
in some way by its past history. We consider a class of functional-differential con-
tingent equations which involves an hereditary system. On the other hand, this class
includes functional-differential contingent equations investigated by N. Kikuehi [5].
In the present paper we obtain an existence theorem for thig extended class of equa-
tions.

Introduction. A number of papers have appeared recently on the
subject of the optimal control of systems whose dynamices depends on
the past history. These control systems can be written in terms of con-
tingent equations. In the paper [5] N. Kikuchi has considered the control
problem deseribed by the functional-differential contingent equation

(1) , o'(t) e F'(t, my),

where F denotes a mapping which assoclates with every point (i, 2;)
from -a certain domain a set F (¢, ,) in the n-dimensional Euclidean space,
and ,(0) = x(t+0) for @ e [ —r, 0]. In this paper we ghall investigate
an equation which includes (1) as a particular case. The aim of our paper
is o give a proof of the existence theorem for equations of such a generalized
type.

1. Notations and definitions. Let R denote the real line and R" the
real n-dimensional linear vector space with the norm ||-|. If A and B
are compact subsets of a given metric space, then the Hausdorff metric
d(4, B) is defined as the smallest ¥eal number d such that A is contained
in the d-neighbourhood of B and B in the d-neighbourhood of A. The set;
of all non-empty compact convex subsets of R with the Hausdorff metric
is & complete metric space ([61), which we shall denote by 2% A function F
defined on a real interval [0, T'] with values in Q" is Lebesgue measurable
if for every closed subset D = R" the set {te[0,T]: F(i)nD +# @} is
measurable. Here, and throughout, @ denotes the empty sot. A function ¥':
[0, T1—=0Q" is called integrably bounded if there exists a Lebesgue inte-
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grable function A: [0, T]—R such that d(F(¢), {0}) < h(?) on [0, T]. By
C,.([0, T']) we shall denote the space of all continuous funections #: [0, T']—-R
with the supremum norm ||, = max{|lz(¢)||: ¢ € [0, ]} and by L, ([0, T'])

the space of all Lebesgue summable functions from [0, 7] to R" with
T
the norm |z, = J lw(t)]|dt. The space of all real valued functions with

summable p-th power we shall denote by L?([0, T']). In this case we put
1!
7l 2 = ([ IR (6P &) for he L7([0, T]); p = 1.
Al '0

, Let A denote the set of alllnon-empty compact subset of B and let A
be an element of . It is convenient to assume that zero is the maximal
element of A. Let G, = 0,(4). Suppose that F is a interval of B and a:’
B x . A—R is a continuous function such that: (a) a(l, :4) € 4 for all ¢ € B,
(b) a(t, @) <tforteland O e 4, (¢) a(t, @) < a(l,n) for t e I and @ < 1,
(d) (%, 0) =1t for te B, and () |a(t, O)—a(t, @) < t—1t'| for &, t' € H
and @ € 4. Let ur denote by X the space of all continuous functions z:
P-R", whore P = (B x A). For every fixed t e P the mapping H;:
X->0, will be defined by (H,z) (0) = »[a(t, )] for @ e A. The triple
(4, a, H) will be called as an hereditary structure. By substructure of
(4, a, H) we shall mean the triple (4, a, H), where 4 € 4 and 4 < A4,
@ = a|4 and H is defined by (H,z) (@) = x[a(t, O)].

Let (A4, e, H) be an hereditary structure and let g: £ x C,—R" and F':
E x C,—0Q" In this paper we shall investigate a functional-differential
contingent equation of the faorm

@) ~ IDWH@] & P(t, Ho),

where D(t)@ = & (0)—g(t, P) for te B and dPe(,.
To appreciate the denerality of (2), let us consider some special cases
of this equation. If g = 0, then (2) reduces to the equation

(3) z'(t) e F(t, Hx).

TA=[-r0],r>0a({0) =t+60, @c[—r0], (Hx)(0) =a(t+6),
O e[—r, 0], then (3) reduces to the functional-differential contingeut
equations of retarded type

(4) . x' (1) e I (¢, ),

where we employed the conventional notation #,(@) = z(f + ). Preserving
this simple notation, we see that (2) includes the general class of equations

d
(6) . =Dl P, ).



TFunctional-differential contingent equations 161
If F = {f}, where f: [0, T]x C,~R" then (2) has the form
d .
(6) E[D(t)ﬂzfv] = f(t, Hy),

which has been first investigated by Hale and Cruz ([3]).
We now formulate the initial value problem for (2). For a hereditary
structure (4, a, H) and o € ¥ let E, be the set of real numbers defined by

E, = U coa(t, 4)n(—o0, o],
(e
where by coG we mean the closed convex hull of ¢. Given a ¢ in F and
a function @ € C,, we say that & = (o, @) is a solution of (2) with the
iitial function @ at o, if there is a y > 0 such that » is defined and con-
tinuous on H,U[o, o+ ], 2 coincides with @ on H,, D (t)H,z is absolutely
continuous on [o, o +y] and satisfies (2) on [o, o+ y].

2. Fixed point theorem. The analogne of the Schauder fixed point
theorem, which we shall need in this section, is due to Bohenenblust
and Karlin in [1]. In the formulation most readily useful for our purpose
this states.

THEOREM 1. Let 8 be a compact convex subset of a Banach space and
let I' a continuous (in the Hausdorff topology) mapping of S into the space
of non-empty closed convex subsets of S. Then I" has a fized point, i.c., there
exists x € § such that z € I'(z). '

In this section we give a slight generalization of this type fixed point
theorem. Let X be a Banach space and let us denote by Conv(X) the
collection of all non-empty closed convex subscts of X. We, shall prove
the following lemma.

LeMMA 2. Let S be a compact convex subset of X and let T': X—X be
a linear mapping such that |T| < 2 < 1. Suppose that I': §—Conv(X) is
continuous and. such that T(8)+I'(z) = 8 for every xeS. Then T +1T
has a fized point. '

* Proof. Let I be the identity mapping. Since T is a contraction,
then I —T i8 a homeomorphism between S and (I —T)(8). We shall
show that I'(z) = (I-T)(8) for every # 8. Suppose y € I'(z) for fixed
% € 8. Let {z,} will be defined in the following way: %, € 8, #, 4, = ¥ + T (%)
for » =0,1,2,... We have a, e T(z,)+I'(2) <« T(8)+I'(@z)< S. In a
similar way we obtain w, ed for s = 2,3,... Furthermore, we have
l[m‘n,+l _wnliX = “T(mu) "T(mn—l)"_‘{< ITI Hmn—%—ﬂlx < 7~||-’~”n.'—wn—1"x for n
=1,2,..., where 1€ (0,1). Therefore {x,} forms a Cauchy sequence
which must converge to an element # e 8. It is clear that & satisfies
(I —T) (%) =y. Oonsequently, for every 7 e I'(x) there is a @ e.§ such
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that y = (I—7) (&) e (I—1T) (8). Thus for every @ € 8§ we have I'(n)
< (I-T)(8).

Let us observe that finding a fixed point of '+ I'in S is eqmva,lent
to finding a fixed point of (I—T) ‘ol defined by [(I—T)"'cl](z)
= (I-T)*{I'(z)) for » € §. Indeed, let © € § bo a tixed point of (I —T')~'ol,,
i.e., let 2 € [(I—T) 'oI'](x). There exists an element y e I'(#) such that
z = (I—T)"*(y). Therefore z = T (x)+y, ie., ze(T+I)(x). Suppose
that # € (T4 I") (#)nS. Then z — T (x) € I'(x). Therefore there is an element
g e I'(®) such that »—T(x) =y, ie, 2 =(I—T)"'(y). Consequently
z2e[(I-T)"toI (z).

Now we shall show that (I —T)"'ol' satisfies the hypothesis
of Theorem 1. By DProposition 4.3 given in [4], the mapping
(I-T)"'oI is continuous on 8. From I'(z) = (I—1T) (8) it follows that
[(I-T)olI'l(x) <8 for every xeS. Obviously, [(I—T)'ol'l(z) is
closed for every z € 8. To see that [(I —T)~'oI'] (z) is convex set, suppose
u,v € [(I—T) ol (x) for fixed » € §. Then there are 2, w € I'(x) such
that v = 2+ T(u) and v = w+T(v). Since yu+ (L —2}v = v+ (L—v)w -
+ T'{vu+(1—»)v) and »2+ (1 —»)w e I'(z) for »€[0, 1], then there is an
element y e I'() such that wu+(1—v)o = (I —T)"}(y). Therefore »u+
+@X—»)ve[(I-T) oI (z) for z €S and »€[0,1). Hence, in virtue of
Theorem 1, the mapping (I —T) 'oI" has a fixed point. This completes
the proof.

3. Existence of solutions of (2). In this section we write I = [0, T)
For given function @: I+Q" by # (@) we shall denote the set of all Le.
besgue integrable functions fu, I>R" hawmg the property that u(t) e G(1-

for almost every tel. Let fG‘ T)dr = [f w(r)dv: weF(Q)) fortel It
hag been proved in [2] that for every measurable and integrably bounded

mapping G: I-0"we have F;(G) # @ and that f G )dr is a compact,
convex subset of C,(I).

We will say that a mapping F: I x 0, —Q" satisfies the Carathéodory
type conditions if F(, y) is measurable in t € I for fixed y € O, F(i, ¥)
is continuous in y e 0, for fixed ¢ eI and there emsts m e I*(I) such
that @(F (2, y), {0}) < m(t) for (t,p) e IxC,.

We shall need the followmg lermma.

LEvmA 3. Suppose that (A, a, H) is an hereditary structure anmd that I':
IxCy4—0Q™ satisfies the Carathéodory type conditions. Theén for every
z € C,(AVI) the mapping G: I Q" defined by G(t) = I (i, H,x) is meas-
wrable and integrably bounded.

Proof. From the ‘definition of G it follows that d(G(t), {0}) < m(?)
for ¢ € I. It has been proved in [2] (see Lemma 2.8) that if &: I x D—Q",
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where D < R", satisfies the Carathéodory type conditions, then for every
# € O, (I) such that #(I) = D, the mapping & (t, #(1)] is measurable on I.
Let us write (i, 2) = I'(t, H,x) for fixed # € C, (I x 4) and (t, z)°ed x I.
It is clear that (%, 2) satisfies tho Carathéodory type conditions. Therefore
the mapping @ (t, w(t)) 18 measurable on I for every continuous function »:
I—I1. Taking z(t) = t we get the measurability of G on I. This completes
the proof. .
Let ¢ €I and let us denote by I,(s) the interval [g, o4 4] for fixed
8> 0. For a given @ € 05 we define function & on E,ul,(0) as follows
. &ty for tekH,,
D(t) =
D(g) for tel,(o).
Assume that g: I X C,—~R"is a mapping satisfying the following conditions:
(i) ¢ i8 continuous on I x (,, (ii) g is linear with respect to y € C, and
such that there is a number 4, e (0, 1) so that sup{llg(Z, ¥)l: pll. = 1} < 4,
for t 1. ' |
We prove the following lemma.

LEMMA 4. Suppose that (A, a, H) is an hereditary structure, g satisfies
(1)—(11) and let 2 € (4, 1). Then there are y > 0 and a hereditary substructure
(4, &, H) of (4, a, H) such that |g(t, H,&)—g(o, H,D)| < 21— — A, for every
tel,(o) and DeCy.

Proof. For it eI we have
lg (¢, H;®)—g(o, H, D) < llg(t, H; D) —g(o, H )|+
+lg(o, H D) —g(o, H,B)|.
By contmmty of g there exists y > 0 such that
||g(t H,$)—g(c, H N<3(A—2) for tel o)
Furthermore, we have
lg(o, H,B)—g(o, H.O) < 2,\H, S —H, D,
Since (H, 8 —H, Bl =sup|@(a(t, 6)) — 8 (al, O))] for a(ty 0) e B, and
\H, & —H,d|, = sup”di(a a, 0) — @ (a(o, O))|| for a(t, @) € I,(0); then it

follows that
. Y A—2
—H . < —-Z
”‘Hl¢ o ”O 210
whenever y and diam(4) are sufficiently small. This completes the proof.
Now we can prove the existence of solution of (2).
THEOREM B. Suppose that (A, a, H) ts an hereditary structure, F:
I % C,—~Q" satisfies the Carathéodory type condition g: I x O ,~>R™ satisfies
assumptions of Lemma 4, c el and @ €0, . Then there are substructure
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(4, a, H) of (4, a, H) and a y > 0 such that (2) with the initial function @
at o corresponding to (4, a, H) has at least one solution x(®P, o) defined on
B,Ul,(0).

Proof. Suppose that y > 0 and (4, a, H) are such as in Lemma 4.
It will be convenient to write (4, ¢, H) instead of (4, @, H). Let I y = 1,(0)
and let w,(s) = sup {llg (¢, v) — g (', 1/)) i, t'el, p,9p' €Cy, [t—1|<e¢,
ly—9'le < e} and wg(e) = sup{|P()—-PE)N: ¢, ' ed, [{—¥|<e for
&> 0. Consider the set § < C,L(Eculy) of all continuous functions :
E,ul,—~R" such that x(f) =0 for teW,, |z(t)—a( )< o(jt—1]) for
t,t elo,T], |2, < M, where

1+ (il

wg(6) + dywale) +mlpsVe L 1-
1—-12, 1— Ay

It is easy to see that S is a compact convex subset of 0, (E,uUl ). For
every z €8 let ¥ (z) = #;|F(t, H,(z+D))| for fixed t eI and let

{0} for t e E,,
[9(t, HB)—g(o, H,B)]+ fr(r (@+®))dv  for tel,.

o(e) =

(I'm) (1) =

In virtue of Lemma 3 and by the propertms of f T (v, H (z+ &) dv (see [2])

we can see that Iwe Comp(C,(E,I,)) for every v €S. Then I': §—~
Comp (C, (H,UL,)). To see that I' is continuous on S let , be an arbitrary
element of § and let {x,} be any sequence of § such that |z, —|l,—0
as n—o00. Since

NHy (2, + D)~ Hy (%o + D)ll, = sup [, [a(t,6) —wo[a(t, O)]]
< sup{ sup |z, (w)—zo(w)|}
Ocd ogu<a(t,®)
< Sup |, (u) — 2y (u)]i < 1%y — Dglle

oSust
then

1H, (2, + B)— Hy(2, + D)l,—~0  whenever |z, —a,/l,—0.
Therefore

Hmd [P (t, H,(z,+ b)), F(t, Hy(m,+B)] =0 for tel.

Nn->00

Hence, in virtne of Theorem 3.2 given in [2], we get

hmh[fl’(r H,(z,+))dv, fF(-r H (v, + &)} dr| = 0,

where b denotes the Hausdorff metric in Comp(On(E,uI,,)). Therefore
we have limhi(I»,, I'z,) = 0.

T =00
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Let T: C,(B,VI,)—C,(E,Ul,) be a mapping defined by
for t e B,
g(t, Hyw) foritel,.
It is easy to see that T is a linear mapping. Furthermore we have

|T| = sup {|T=,: =l =1} < sup {§qu lg(t, Hyz)ll: i, = 1}

(To) (1) =

<sup{F,sup|Hal: ol =1} = 2, < 1.
T €

Tor every ye S, we 8, zeTy+Ix and t eI, we have
le(®)ll < |lglt, Huly+ D) —g (¢, H, )|+ lg(t, B, B) ~g(a, H, ¢)||+

+ f m(z)dz
< )‘g ”th”c ()' Ag) + HW’HL2 Y “y”c + 1 + “'m'”L2
<

Zg-M-"}" 1 "I"”m ”L25
where M =1_1{—LW2”L2 Then |z, < M for every y €S and xe 8. For
g

t>tel, and ze Ty + I'z 'we obtain
le(t) —~ 2 ()< |lg(t; Holy +B)) — gty Hily + D))]| +

11
+g(t, H(y+ @) —glt', Hly+ )|+ [m(z)de
;

< w([E—t'1) + 2, IHy —Hpyllo+ 2, HS —H Bl + Imll 2V 1t~ |
< g ([t—1']) + llm]lz2 Vi—t1 + A0, —11) + A, H,y — Hyyll,-
Since
2y — Hyyll = |ly(alt, ) —y(alt, O] < e(lalt, ©) —a(t, O)l) e(lt—1),
then, by the definition of the set §, we get
le(®) —z ()] < o(B—1|) _for t>t;el,.

Consequently z e 8. Therefore T'(8)+I'w < S for every zel. " Hence, in
virtue of Lemma 2, follows the existence of & € § such that @ e (T'+ I') ().

Now we shall show that j =&+ is a solution of (2) with initial
function @ at o. By the definition of T and I' it follows that & () = 0 for
t e H,; then #(t) = ®(t) on H,. On the other hand, from & e T+ I'd for

tel, it follows that
¢

5(t) = gty H (@ +8)—g(o, HB)+ [u(v)dr,

-4
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where (1) € F'(v, H (T + &) for a.e. t € I,. Hence
11

DO H(G+P)—D(0)H,(&+8) = [u(r)dr.

a

Therefore we have
d
E[D(t)H,,g’/] e(t, H,;y) for a.e. tel,.

This completes the proof.

References

[1] H. F. Bohenenblust and S. Karlin, On a theorem of Ville, Ann. Math. Studies,
No. 24, p. 156-160. Princeton, N.J. (1950).

[2] T. F. Bridgland, Jr., Trajectory integrals of set valued funotions, Pacific J . Math.
33 (1) (1970), p. 43-68. '

[3]1 J. K. Hale and M. A. Cruz, Existence uniqueness and continuous dependence for
hereditary systems, Ann. Mat. Pura Appl. 85 (1970), p. 63-81. '

[4] M. Hukuhary, Sur Papplication semicontinue dont la valuer est un compact cpnvexe,
Tunk, Ekv. 10 (1967), p. 44-66.

[6] N. Kikuehi, On control problems for functional-differential equalions, ibidem 14
(1971), p. 1-23. '

[6] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1851),
p. 152-182,

Regu par la Rédaction le 3. 5. 1975



