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Repeated convergence and fractional differences

by MARVIN BARSKY (New Jersey)

1. Introduction. In [3] the notion of Cesaro summability was investi-
gated by first considering the Cesaro summability classes C,, i.e. €, is the
set of all series which are summable (C, ), and extending y to include
all real values, rather than values greater than —1 as is commonly done.
The extended definition, discussed fully in [3] is as follows:
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the n-th Cesaro sums.

The series )'a, is said to be summable (C, y) to sum a'®, y an arbitrar
- ' Y y

real number, if
(2) sYFT — gAYV Lo(n¥tT)  for r =0,1,2,...

This family of sets was then enlarged to a family {E, ,} defined for
all real values of # and y by a procedure involving the Cesaro sums, which
will be reproduced below. This enlarged family, where R,, = C,, is
called the repeated convergence classes.

However, given the family {E, } for all integral ¥ and real y, there
is another way of enlarging this family, to classes with fractional & by
the use of fractional differences instead of Cesaro sums. The resulting
family is called the fractional difference classes and will be denoted by F_ .

In this paper, these classes will be discussed and, in particular, their
close relation to the classes R,, will be investigated. For convenience
we define here the repeated convergence classes R, , and give their charac-
terization in terms of Cesaro sums, see [3].
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Suppose D, is a convergent series. If we let

=]

a'gzl) = Z a,,

v=n+1

then af) is defined for each #» and we may consider the series Y al. If
this series converges, we say, following Zygmund [9], p. 373, Vol. 1,
that }'a, has convergence of order 1. In general a series > a, has conver-
gence of order k, k a non-negative integer, if Yal) converges, where

a}f) = Qp,
a® = 3 o), k=1,2,3,..
v=n+1
The series Yal is called the k-th iterate of Xa,.

The above definition does not permit us to consider the k-th iterate
of a series -unless we first assume that the (k—1)-st iterate converges.
This is an unnecessary restriction that can be overcome by the following
procedure; a procedure that will, in addition, suggest a way of extending
repeated convergence to fractional orders.

Suppose a series Y'a, has convergence of order k and let

o0 o0 [o0]
a® = 2 a,,a" = Z ald,...,a® = 2 al.
0 0 ' 0
Then

a’g’) = Oy,
[o <] . n

ald = 2 a, = a®—s®  where sV = 2 a,,

v=n+1 y=0

n
a'? = o — 2 oM = a® —a® AN 4 g0,
v=0

where s{) is the n-th Cesaro sum of order 1. In general
af) = (-1 [s;7 —a® A7 +aV AT — L+ (—1)fal0]

It is not necessary for Ya, to converge in order to define al’). If Ya, is
summable by any method of summation to a®, we may define af
= a® —s® and likewise for the terms a{®), k > 1. Also, since both s¥
and A% are defined for fractional orders we can define a{® for & frac-
tional since it consists of terms involving s* and A% only. Finally, if the
x-th iterate is not convergent but is summable (C, y), we express this
by saying that the original series is in the repeated convergence class
R, ,. Formally, we have the following definition:
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DEFINITION. A series )'a, is said to be in the repeated convergence
class B, ,, ¢ =0 orz = a+k—1,0< a<1,k a positive integer, if there
exist numbers a, a®, ..., a® such that a{ is summable (C,y) to a®,
where ' X

a® =gq, ifx=0, '
agc) — (—1)k[8;+k_2— a(O)A;+k-2_=_a(l)A;+k—3; L —l—(—l)ka("_l)A;‘l]

if # =a+k—-1.
In addition -
(—1)a® if & =F,

0 if # is not an integer.

a® =

If # =y—Fk, where 0 <y <1, k a positive integer, then the series is
said to be in class R, , it Y A*a,c R, , and N A*q, is'summable (C, y) to
A% la,. x is called the order of convergence and vy, the order of summability
of the series.

Note. The definition of repeated convergence classes of negative
order arises as a consequence of requiring Lemma 3, see [3], to be valid
for all orders of convergence. Also, the requirement that a® = 0 if #
is not an integer is natural. If Ya,¢ R, ,,2 > 0,thena®) =0 for 0 < 2’ < o
if #’ is non-integral. Thus we havé defined classes R, , for all ordered pairs
(@, ¥) of the Euclidean plane with the classes R, , being the Cesaro sum-
mahbility classes. : ‘

The following theorem characterizes repeated convergence classes by
means of asymptotic expansions of Cesiro summability. Theorem A*
below makes the characterization particularly lucid.

THEOREM A. A necessary and sufficient condition for a series Da,
to be in class R, ,, ¢ = a+k—1, k any integer, 0 < a < 1, y arbitrary, is
that there exist constants ¢, ¢y, ..., ¢; such that for all non-negative integers r,

(3) STYVIT — g ATHYTT Lo ATHUETX L g, ASTURT Lo AV L o (g¥T)

if >0,
STHUET — o (R¥TT) if #<0.
The ¢; = (—1)Ya?, j =0,1,...,k—1,
(—1)a® if » =k,
C;. —
* 0 otherwise.

By changing the first few terms of any series, which does not affect
the repeated convergence class to which it belongs, we can then state
that

THEOREM A*. Ma,c¢ R, , if.and only if s5*¥*" = o(n¥*") for all non-
negative integers r and arbitrary x and y. '
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It was proved in [3] that Ya,c R, ,if and only if YAY A%a,e B, vy y e,
for integral & > 0, real =, y, ¥ except for certain special values of the para-
meters, where the sufficiency condition is meant in the sense that there
exists a unique series )a, satisfying A*a; = A*a, which is in R_,

We can also replace A! by »’.

References in this paper to Theorem 2* or Theorem 6 of [3] refer
to different parts of this result.

Finally, it was shown in [3], Theorem 3 that if Z‘a € J.‘i:,c , and z’

y' >y, then Da,c R, ..
2. Given a sequence {a,}. The fractional difference 4”a,, is defined by

(= o]
— —y—1
= E A Gy ypy
n=0

i.e. it is a formal infinite series.
We have the following theorem concerning fractional differences.

THEOREM 1. Let y be any real number and let {a,} be any sequence
of numbers. If

oo
A7"ay = ) Ay ay, pe Ry,
p=0
for a particular n, then it is in R, , for all n, where x and y are arbitrary.

Proof. First observe that if y is an integer < 0, the theorem is trivial
since A4~ "a, 1s & finite series. Thus suppose y #* 0, —1, —2, ... We suppose
further that 47 7a,¢ B, , for a particular n. Clearly it suffices to show
that
A?—l

p Oniiyp

eR,,

D

-¥ —
A an+l -

Il
-3

D
and

oo
-y — y—1
A7y, = 2, A0y 1 pe By
»=0

The following formula can be easily derived:

R—-1
(1) 2 PAy_zan+1+p
=0
y—l)Z Ay n+,,+(y—1)2 A4} 80y p) — (¥ —1) 8,
D=0
Since 2 Al 'y, pe By, it follows from Theorem 2% [3], that 2 A(AY e, )
=0 p=

eR,,,, and therefore is in E,,. By (1)

o0
y—2
2, DAL Ay g€ By
=0
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It follows from Theorem 4, [3], that

(=]
y—1
2, P’ @piripe Byy

p=0

and again from the same theorem, that
Z Ay pyrype Bey
=0

The proof that 47 %a,, ¢ R, , is similar.
’ -] -]
Given a series Ya,. Suppose 4% %q = Y At¥-lg  _ converges
n A D n+p ?
n=0 pP=
where 0 < e< 1, k¥ a non-negative integer. .

Then A4~ *a, converges for 0 < j < k. Moreover, we have

n n
A= la,,, = A7 ay— 2 A%, = a‘® — 2 A %a,,

y=0 v=0
where
[ =)
B _
a’® = Z A4~ %,
n=90
A—a-zan_l_z = gt a<°>A$:’+t£,”(a),
where
) o0
ale+ty — A—a—lal _ ZA—Q_lan-i-l
n=0
and

t) (a) is the Cesaro sum of order 1 of the series 2 4" %a,.

n=0

(2) 4 %a,.,
= (—1)*[tE1 (a) — @@ AE f g AE- | (—1Ykgletk-D],

where

=]
aCe+ — 2 A", 0K <K,
n=0

and t{?(e) is the k-th Cesdro sum of > 4~ °a,.
n=0
It is not necessary for 47 “a, to converge in order to define a series

corresponding to 4=°"'a,. If 47 "a, is summable by any linear method
n

of summation to sum a‘” we can define A-*Ya, , = a‘”—3 47%a, and
=0

likewige for higher orders. The parenthesis will indicate this definition.
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Note also that 4~*"Ya, = A~'A"a,. Thus we have the following defi-
nition: - ‘
DEFINITION. Given a series ) a, and let 0 < a < 1, k¥ a non-negative

n=>0

integer. If there exist numbers

<a> a<a+1> . <u+k)

such that ZA( ““Ma, 18 %ummable(C y) to a<*+® andA °q, = ZA“ a0
p=0 p=0

is summable (C, ¥), then we shall say that the series Z‘a 18 in the fractional
n=0

difference class F,., ,, where A" *"¥g  is defined by

A Mg, = (— 1 (@) - a@AET L (et

ond t¥(a) is the k-th Cesaro sum of YA ‘a,.

n=0
If ¥+ = a—k, where 0 < a<< 1, k a positive 1nteger, then a series is
said to be in class F,, i

oo

k
E A%a,e F, ,
n=0

and

N (€.v)
I 'Y e—
E Aa, =" A a,.

n=0

Notice that here we have a ranging from 0 < a<landnot 0 <e<1
as in the case of repeated convergence. This means that the fractional order
k + a is analogous to the integral order k and not k+1 as in the case of
the repeated convergence classes.

Let = k-+a, where 0 < a < 1, k a non-negative integer. If 47 %a,
is summapble (C), i.e., summable (C, y) for some real y, then it is summablc
to 4C%a,. Thus, if Zane F,,, then >A %a, is summable (C, y).

Conversely, if > A4 %a, is summable (C,y) and 4~ %a, is summable
(G’.y)’ then Eane F:v,y o

The classes F,, have the following properties:

(i) Ry, = Fy, for all y and all integers k;
() Ya,eF, ., if t,md only if ZA“‘a;Le R, ,, where A7 °a,

n=0 n=0
= ZOA" 'a, ., 18 summable (C,y), k= 0;
=
(iil) If Za ¢ Fy,y, then A~ *a, = Y Ak 'a,  is summable (C,y+k—1)
p=0

or all mtegers k and all y.



Repeated convergence 227

Note that (i) is a special case of (ii) (the case where a = 0), for k > 0
For k< 0 (i) follows immediately from the definition.

In order to prove (ii) it is only necessary to observe thatif b, = 47 %,
then

—a—-k k
4~ Ap ik =b£z)7

where b is the n-th term of the k-th iterate of Y'b, (see (3), [3]).
n=0
If % is a non-positive integer, then (iii) is trivial. Suppose % is positive.

From (i) it follows that ) a,¢ R, , and by Theorem 27, [3]
n=0

=3

k—1
ZAn a,nG Rl,'y+k—1'

n=0

But

and by Theorem 1

A_kan-i—kG Rl,‘y+k—1‘
Thus 4~ *a,_ , is summable (C, y-+k—1).

3. The following theorem is due to Isaacs [5]:

THEOREM. If r< 0, r+s8 #0,1,..., A>max(—s—1, —1), k> s,
and if A" %a, is summable (C, 1), then A(’c’,’i)a = A, 1110(A{c, @)y where
# = max(A+4+7r, —1).

If s is an integer we may take k = s but if s is non-integral the ex-
pression on the right need not exist for ¥ = s. When s is a non-negative
integer, the condition r < 0 may be omitted.

This theorem enables us to establish connection between the classes

F,, and the Dirichlet series ZA

THEOREM 2. Let r = a+k < a< 1 k a non-negative integer. If

oo

daeF, then 2 Afa, is summable (C, x+ ¢) for any ¢ > 0. Conversely,

n=0 n=0

f Y Ala, is summable (C,x—e), then Za eF,,.
0

Proof. For x integral the theorem 1s a consequence of Theorem 2%,

[3]. Assume z is non-integral and that Za eF,,.
Claim.

(3) Aen(47%a,) = a,, where v =a+k.
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This was proved by Andersen in [1] whenever the inner difference
exists as a convergent series. If 4 *q, is summable (C), then it is summable
to sum A“%a,. Therefore,

A*(A~%a,) = A°A' ... AN (47471 ... 47 A %a,) = A°A°a, = a

n

since 47 “%a, is a convergent series.

From Isaacs’ theorem we can easily show that if }'a,¢ F,,, then
A7 %a,, is summable (C).

To see this, first suppose ¥ = a, where 0 < a < 1. Then from the
definition of F,, we have that A7 “a, is summable (C).

Suppose ¥ = a+1. Then from Isaacs’ theorem

(C 0)(4‘I a‘n) = A(?‘,’l)_-a ?C)(A_ua’n) = A(_C])—aan

since 4°(4"%a,) = @,, where r = —1—a, s = a.
Thus 4-'"“a, is summable (C), and by induction, the result follows
in general. :

Now Da,¢ F,, implies 44 (47%a,). But
0

Aicioy(47%a,) = A7ty dic,0 (477 ay,)
by the theorem of Isaacs with

r=—1—w, 8§ =u.
However, by the claim
A:(EC,O)(A—za’n) =&

n*

Hence
A(‘Cfo)(A"a, ) = (o 216 (@)

Whlch means ZAP 2@, 18 summable (C, x + ¢) for each » and in particular,

ZA” p 18 summable (C, x+&).
p=0

The converse follows immediately from Isaacs’ theorem since
DAra, = 47" a

COROLLARY 1. If Ya,eF,,, then A~%a, = Y A7 'a, , is summable
p=0 »=0
(C,z+¢e—1) for any & > 0.
The next theorem shows that the fractional difference classes have
the inclusion property, at least for zero order of summability.

THEOREM 3. If Za eF,,, then Za eF o for ' < .

n=0
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Proof. We first assume that z > 0. We may also assume k < 2’ <
< ¢ < k+1, all other cases follow from this case and property (ii). Now

Zml‘ A~%a, = Zm: A~*[ A" (4~ a,)]
n=0 n=90

by the claim in the proof of Theorem 2. Hence
m m n—1 m n—1
—x’ - -z’ T - —_ -z’ +1 -z
g)A a, nZ:;A |4 (Ag A7%a,)| ;A “[as (; A=%a,)|

since # and 1 are both non-negative and } 4~ %a, converges. But

n=0
~1
Adic: o)(A(c 0 2, v A_:") =4 czo;r“l(nz;‘ A—Iav)
v v=0

by Isaacs’ theorem with »r = —2', s = x+1. Since k< ' << k+1¢
r+s #0,1,2,... Thus

m m oo P
@ X aa, ==} AT ) A7)

n=0 n=0 p=0 v=0

~ = 3 (5 a7a) 3 azszsi— 3 3 a-ea) cagioe - a5,

We may suppose without loss of generality that ZA a, converges to 0.

From (4) we see that "=
§A"'an=§A;:1" o(1)+ Z(ZA "a,) A5 =2
n=0 =0 p=m v=90

Since ' < x the first series has terms o(p® ~*"!) and hence converges as
m — oo. As for the second series,

IZ(ZA a) 1 max‘ZA*xa MA;"‘”'“1[=0(1) ag m — oo

y=0 pEmo =0

since we assumed that Z‘A“"an = 0.

n=0
We now assume z << 0,

== —k+a, m,= —k"‘l_a’

say, where k is a positive integer and 0 < o’ < a < 1. From the definition
of fractional difference classes of negative order of convergence we see

that
Za, eF,, ¢>2A"a eF,,

n=0



230 M. Barsky

and
o0 [ ]
Zane Fﬂi’,o @Zﬁkane Fap'o
n=0 n=0

By what was proved above, the theorem easily follows in this case.

Since the classes R, , and F, , are the same for  integral one may
suspect that, though they are different when  is not integral, there may
still be close connection between them. We have in this regard the fol-
lowing theorem:

THEOREM 4. If Za eF,,, then Za eR, ., and Za, eR,, for
any € > 0. "=

o o0
Conversely, if D a,e¢R,,, then Da,<F,._, ..
n=0 n=0

Proof. We shall first prove that if ) a,¢ F,,, then Ya,¢ R, , for
n=0 =0

any 2’ < x. For z integral ¥, , = R, , by (i) and the proof is an immediate
consequence of Theorem 3, [3]. We may suppose that k< &' < z < k+ 1,
k an integer.

Case (i) 0 < #’ < # < 1. Since ) a, converges, we have the identity

n=0
o0

st = A% a% + Z(A“_
=0

. 00
and since 4~ %a, converges and > 4 “a, converges it follows that
n=90 .

n—1

4(47%a,) = a, = — 4*|4 E‘IA—%,] = — 4" ( Y A7"a,).
v=0 v=90

Hence
s — a4y = Z<A 45 Y 455 ( 3 %)
pP=0 r=0

'2\18

(A;cl —A:—v) ];‘Tv—fl'

“Ne

The interchange of the order of summation is justified as foﬂoﬁvs_: letting

8 = Zﬂ A=*
P=0

v

0
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we have
o o0 co o0
2 ZAE—z;fng) = 2 prr 85 = ZA;z—lSp—l
D=0 v=0 p=0 p—0
= D474 8E) = — Ag(A7%a) = —AGga
p=0
o0
— Zan = —a",
n=0

On the other hand,

e
e
R
T4
Yo
%

|
'.\JS

L 4EsE, = T AT[A8E,]
y=0

«
I
)
=3
i
<
<
I
o

—jé]’(ﬁ‘zav) = —Zna, = —a9,
»=0

r=0

Hence both double series converge to the same sum. As for the other
term,

oo o n (]
ZAx,—vZA;Iv-EIS(x) = ZA;’—‘V ZA;J:I!-EIS(T)
v=0 Pp=0 »=0 pr=0

= YS(I)Z n—v pz;+l

»=0 y=

o0

v=0

Thus we finally get

o 3 [o =}
(5) s —aV47 = N8P N (AF — A7) 457
p=0 =0
o0
= ) splara - 3z A;5H]
p=0 r=0

We will show that Toeplitz’s condltlons are satisfied, except that in this
case

S[AzAl;fl ' ZAN—V'A;zyfl] 0 as n — oo
=0
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instead of 1, implying that the transformed series sz —a(® A2 converges
to 0 as n — oco:

n
— 1 —,—2
(a) p-fl Z AR50

n
— AT AT ZA“ it D) (AT — AT ) AT,
v=0

= Z(A” )A;7%, for n > p and this sum is
-1
<A — A7, 10(1) = 0@1) D) A7) = 0(n" ") = o(1)
) r=0 ’

as n — oo since 0 < ' < 1.

(b) Y AzAT— Z ZA 4,50 = 2 A7, 2 A58
»=0

v=0 p=
The second term is zero for all » > 0 and for » = 0, it is AZ". Hence

S’A;’A;:ll 2 Z AT A7h = — AT+ AT =0
=0

v=0 p=
for all n.

oo pjl n
() Z\A“Apf.ll > az Ap’vfl\ =N+ N =+
NOW =0 »=0 p=0 p=n+1

5‘ Az 4z~ i’A AR
p=n+1 v=0

Since each term inside the absolute value signs is negative we have

Q= — D (474,75 Y a5, 470,
p=n+1 y=0

Now

2 AN = 0(m*)o(n®) =o(1) as n — oo.

»=n+1
Also
n
b ZA At = 3 AT 2 A7, —ZA 0 ((n—»))=*
p=n+1 v=0 =0 p=n-+1

= 0(1) for all n.
p—1

@ = Z‘AxApill 2 A Ap-fi_zv .
v=0
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But
p+1 o) g
2' z’ -2 __ z'—1 -2 ' e |
A'n—vAp-l—l—v - Z-An—v 24 Ap+1—r_An—p—1Ap+1
=0 v=0 r=0 '
21
_ -z-1 z’ z’ z'—1 T’ —z—1
= A TTNAY — AT ) — D AT AT, AT
: v=0
2\
T g —z—1 T'—1 4 —x—1
= AnAp+l - ZAn—vAp—v .
v=0
Hence

P

n .
z'—1 4 —2—1
Ql = 2 IZAn—v Ap—v .
»=0 0

v=

ry
Claim. > A75'AZ% ' is positive for 0 < p < n, all «.
v=0

D p—1
r'—1g4~-x—1 ’'—1 4-—z~1 z’ —1
2, An—v Ap—v = 2, An—v Ap—v +An—p .
v=0

r=0

Since the first term is negative it follows that
-1 . p—1
D AT AT > AT Y 4GS AT
v=0 r=0

. z’'—1 -z ‘ r—-1 __ —z 4z'—1 z'—-1 x’'~1
_ —xT 4z’ -1 AT 2
= A, A, o — AL e

But

AZ 2 <0 forall p<m+1l
and so

A AT —AZT2 >0 for 0<p<n
and the claim is proved.
It is now easy to complete the proof of (b)

n » n »

z'—1 4 —z-1 Az -1 g—x-1
3| S asmaz] = N ¥ azas
»=0 Tv=0 p=0»=0

F

n n n
§ z'—1 4—z—-1 __ x'—1 —x=1
Jin—vlip—v “‘Ezjin—v lzjlip—v
v=0 p=0

r=

I
o
)

P

I
%

AZAT = 0(1).

N
Il

1]

Hence Toeplitz’s conditions are satisfied and

s —a® AT = o(1).
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The proof of the general.case of this part of the theorem is an immediate
consequence of what was proved above and of the following lemma:

LEMMA 1. Za eF, 1.0 tf and only if 2 A *a,eF, 4y where 0 < a< 1

n=0
and k is any integer.

Proof. First, suppose k> 0. If > A %a,eF,, we must show that
. n=0

oo
(1) > A7°*a, converges,
" ,
2y 47 %, =)} A} 'a,,, converges.
p=0
Now

Ay(47%a,) = At ay,

by Andersen [2] and D A(‘C‘j;,kan converges by hypothesis. Also
. n=0

o]
ai-k—1
A(c;xy “a, = 2 45 Unip € Lo, i
p=0

if and only if

oo
§ a—1
Ap an_}_pe Rk,l)
p=0

and hence 4~ “a, converges.

o0 (o]
Conversely suppose > a,eF, ,,. This implies > A4~°"*q, converges
n=0 n=0

and by the corollary to Theorem 2, A4~*%q, is summable (C, k). But

A(c K On = A@fo)(d‘kan)

again by Andersen [2]. Thus V A(C o(47%a,) converges and this means
that

For k < 0 the lemma follows from the definition of fractional difference
classes of negative order.

If Z a,eF, ,, then 2 AZq eRo ot by Theorem 2. From Theorem 6%,

n=0

[3] it follows that Z a,eR,,.
n=0
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Conversely, if > a,¢ R, ,, then
n=0

ZAf%fRz-xgx' for 0<or—2'<1,

n=0

by Theorem 6% [3] and > A%a,cR,, . But

n=0
—y— ~1 —x
A(cxx) a, = A(c s)(A(O'IJ:’ 1)%)

by Isaacs’ theorem with r» = —1, 8§ = —a&’, Thus Zan e O equi-

n=0

valently > a,e¢F,._, .. This completes the proof of the theorem.
n=90
In [3] we saw that Za eR,,, k a positive 1nteger, if and only if

n=0

ZA" a, is summable (C, k). We also saw that, if 2 a,eR, o, @ positive

but not ar integer, then it does not follow that ZA" a, is summable

n=0
(C, z). However, as we have noted, when x is not integral we can extend
the .classes R, , in two separate directions to classes E,, and Fz o €ach

of which have distinct properties. Although neither Z a,e R, ,or a a,eF,
implies that Z Ara, i1s summable (C, z), if we allow the serles to be in

n=0

both classes, then the implication is true. In fact, we even have the fol-
lowing theorem:

THEOREM 5. A necessary and suffwzent condition for ZA“"a, to- be
summable (C, x) is that 2 a,e R, o and 2 apeF, . for 0 < s< 1 v =k+a,

k a mon-negative mtegev O <a<l1.
Proof. We first prove the following:

Claim. If } a,¢R,, and } a,eF, ., then
n=0 n=0
A{C‘,o)(d(_c'?e)an) = Oy,

Suppose first that x = a. Since Z a,¢ R, ; the series converges and there-
n=0

fore A~ “a, Z A2 'a, ., converges. Hence 4°(47%a,) = a,. In general,
since Z‘A a 1s summable (C, &) it follows that A~%a n = 0(n°) and

A’(A"a Z’A“I“A"" (.., CODVerges.
p=
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Also, summing by parts & times, we find that
A% (A7 %a,) = A% (47 % a,) = ... = A*(4%a,)
and by what was just proved above,
4°(47%a,) = a,.
We now apply Isaacs’ theorem.

Ao (A7 a,) = Aig o[ A%, 211 (A7) @)1

where »r = —1—x, s = . .
By the claim, the expression in brackets is just a,. Hence > AZa,
is summable (C, z+1). =0
o o0 = <]
Thus if Y a,eR,, and > a,¢F,,, then > Afa, is summable
n=0 n=0 n=0

(C,z+1) and by Theorem 7, [3], D 4ra, is summable (C, z).
n=0

Conversely, suppose ' AZa, is summable (C, ). By Theorem 6%, [3],

n=90

Y a,eR,, and by Isaacs’ theorem
n=90 .

AGa) W = 410,04 2-1)8]
taking r = —1, s = —u.

oo
This means > A~ %a, is summable (C, ¢) and since A~%a,, converges,

n=0

D a,eF, proving the theorem.
n=0

Observe that for © = k, k a positive integer, the theorem reduces
to a special case of Theorem 2%, [3] since F,, = R, ,.

As an application of Theorem 5 and also of the principle:

If a theorem holds for ) a,¢ R, ,, « integral, and is false when « is
non-integral, then if we take > a, to be in F, , as well, the theorem be-
comes valid again, we state the following result in Fourier series:

Let f(x) be a periodic, integrable function of period 2=. Suppose for
0<a<l1

1) fl@+t)y =f@)+o(jt*) ast—>0,
@ e e (UL (U
e—>(0 "

exists for # in a set I of positive measure.
" Then S[f] = > n°(a,cosnz+b,sinnx) is summable (C, a) a.e. in E.
The proof of this theorem, given in [4] follows from Theorem 5,
by connecting condition (1) to S[f] being in R, , a.e. in E and connecting
conditions (1) and (2) to S[f] being in F,, for &> 0.
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If ¢ =1, then f(z+1t) = f(@)+f (@)t +0o(2) alfeady implies that
f(w+t)+f(w—t)—2f(w)

8—’0 t2

exists, and the theorem reduces to a well-known classical result. On the
other hand, Salem and Zygmund in [8] showed that f(x+t) = f(x)+

+o([t|%), 0 < a< 1, no longer implies that > n’(a,cosnx+ b,sinnw) is
0

summable (C, a). However, if we assume in addition that

f fle+t)+f(z—1) —2f (x) i

tl+a

£—>0

exists, which is closely related to the Fourier series of f(v) being in F, ,,
¢ > 0, then the theorem once again becomes valid in the fractional case.
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