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ON KEMPERMAN'S INEQUALITY 2f (x) < f(x+h)+f (x + 2h)

BY

M. LACZKOVICH (BUDAPEST)

In this paper we are going to solve the following problem of
Kemperman [2]:
Let f: R— R be a real function and suppose that the inequality

(1 Y(x) Sf(x+h)+f(x+2h)

holds for every x and for every positive h. Is it true that f is increasing?

Kemperman [1] proved that for measurable functions the answer is
affirmative. Partial answers for the general question were given in [3] and
[4], where the non-existence of solutions of certain type was proved. Our
aim is to show that (1) implies monotonicity without any additional
condition.

Tueorem 1(Y). If f2 R— R is a real function satisfying (1) for every xe R
and for every he R, h > 0, then f is increasing.

It is known that for functions defined on the set of rationals, inequality
(1) does not imply monotonicity. The following example is due to Law-
rence [3]:

Let r be an arbitrary rational number. If r <0, we put f(r) =0.1If r > 0,
then’let n be the smallest natural number for which rn! is an integer and
put f(r) = 2™. It is easy to check that f satisfies (1); moreover, the sharper
inequality

(1% 2f (x) < max(f (x+h), f (x+ 2h))

holds for all rational numbers x and positive rational numbers h. On the
other hand, f is not increasing since it is not bounded in any neighbourhood
of any positive number.

We shall prove that there are countable subsets of the real line on which
(1) implies monotonicity. Let I denote the set of integers. For a fixed real a
the set {na+k; n, kel} will be denoted by I(x). Our main result is the
following

(') Added in proof. A generalization of Theorem 1, given by the author, appeared in
General Inequalities 3 (E. F. Beckenbach and W. Walter (editors), Birkhiuser, 1983), p. 281-293.
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THEOREM 2. Let o be an irrational number such that the sequence of
partial quotients in the continued fraction of a is bounded. Let the real - valued
function f be defined on I(a) and suppose that (1) holds for every xel(a) and
hel(a), h > 0. Then f is increasing on I(a).

Obviously, Theorem 2 implies Theorem 1. Indeed, let f: R—R be a
function satisfying (1). If a and b (a < b) are fixed, then consider the function
g defined by g(x) =f(a+(b—a)x). Taking an irrational a with bounded
partial quotients (say, a = \'5) and restricting g to I(a), by Theorem 2 we
get g(0) =f(a) < g(1) =f(b). Therefore f is increasing.

Lawrence asked ([3], Question 7) if there exist non-negative functions
f (f#0) on I (\/5), satisfying (1*). Now, by Theorem 2, the answer is
negative. Indeed, if f satisfies (1*) on I (\/5) and f > 0, then f satisfies also (1),
and hence, by Theorem 2, f is increasing on I(\/i). Inequality (1*) implies
easily

2 lim fi)< lim f(x)

x—a—( - (
xel(\'2) xel(\'2)

for every real a. Thus, for every xel (\/5) we have
1 1 1
0<f(X)<§f(x1)<... <5,;f(x..)<5;f(x+l)

whenever x < x; < ... <x,<x+1, x;€I(\/2), i =1, ..., n. Consequently,
f(x)=0.

We do not know whether the condition on the partial quotients can be
omitted in Theorem 2 (P 1282). As we shall see, the proof of Theorem 2 is
based on the approximation properties of a and it is probable that a con-
dition of this type is necessary.

For the proof of Theorem 2 we need two lemmas. The first one can be
regarded as a “finite variant” of Theorem 1.

Let .#, denote the class of functions f which are defined on the finite set
10, 1, ..., n} and satisfy (1) for every x, hel so that

O0<x<x+h<x+2h<n.

LemMma 1. If fe #, and |f| < K, K >0, then
f(0) <f(n)+10K/n.

Proof. Let kK and n be natural numbers such that 2* < n < 2**! and let
feZ,, |f| < K. We shall prove the following assertions by induction on k:

(@), If n=2% then f(0) <f(n)+2K/2".
(b), If n=2*¥+1, then f(0) < f(n)+6K/2".
) If 2*4+2 < n< 2! then f(0) < f(n)+5K/2*.
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Then the assertion of the lemma will follow since n < 2**! implies
5K/2% = 10K/2* ! < 10K/n
and n=2+1, k> 1 imply
6K/2* < 10K/(2*+ 1) = 10K/n.
For k=1, n=2, and fe ¥, we have

SO <3 (SM+ Q)< IHfD+2K+/(2) =S (I +K,

so that (a), is true.
For n =3 and fe .#; we have

S0 <f(3)+2K <f(3)+6K/2,

which proves (b),, while (c); is empty.

Suppose k > 1, and (a),_;, (b)_;, (ch—; hold. If 2* < n < 2**! and
fe#, |fI<K, then the function g defined by the formula g(i)
=f@+n=2*"Y)(=0,1,...,27") belongs to #,,_,. Hence, by (a),_;, we
get f(n—2*"1) <f(n)+2K/2*"! and, consequently,

(2) S(n=2 <3(f (n=2""1)+f () <f (m)+2K/2".
Taking n = 2* we get (a),. If n=2*+1, then by (2) we have

3) f() <f(n)+2K/2%;

also

(@) [ <f(n+5K/2*"1,

Indeed, for k =2 we have

f(Q <f(n+2K <f(n)+5K/2.
If kK> 2, then

212 n-2=2~1 <2

Applying (c),_, to the function h defined by h(i) =f(i+2) (i = 0, 1,...,n=2)
we get (4). Now (3) and (4) imply

£(0) < 3 () +f(2) <f(m+K/2*+5K/2* = f (n)+,6K /2",

and thus (b), is proved.
Finally, suppose 2+2 < n < 2**! holds. Applying (b), to the function p
defined by p(i) =f(i+n—2*—-1) (i=0, 1, ..., 2+1), we get

f(n=2%—1) < f(n)+6K/2".
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This inequality together with (2) gives
(5 f(n=2-2) <} (f(n—2*-1)+f(n-2Y)
<f(n)+3K/2*+ K/2¥ = f (n)+4K/2*.
If n>2%+3, then

(6) fn=2*=3) < }(f(n—2*=2)+f (n—2*~1))
<f(n)+2K/2*+3K/2* = f (n)+ 5K /2*.
Now (5) and (6) imply f (i) <f(n)+5K/2*for i =0, 1, ..., n—2*—3, since by
(1) we have
@O <3(fli+1)+f(+2) for every i.

Taking i =0 we get (c);,, which completes the proof of Lemma 1.

Let N > 2 be a fixed natural number and let H be a subset of the real
numbers. We denote by H™ the intersection of the sets U having the
following properties: U > H and, for every real x and positive real h, if
x+iheUfori=1,2,..., N, then xeU. It is easy to see that xe H™ if and

only if there exists a sequence of real numbers xq, x4, ..., X, such that x, = x
and for every k=0, 1, ..., n either x,eH or there is a positive number h
such that

X, +ihe{xg, Xq, ..., ey} (=1,2,..., N).

LemMMA 2. Let N > 2 be a fixed natural number and let o be an irrational
such that the sequence of partial quotients in the continued fraction of a is
bounded. Then for every real number b there is a finite set H — I(a) such that

H®™ > [(a) n(— o0, b].

Proof. Let (aq, a,, ...) be the continued fraction expansion of a and
suppose 0 <a; <K (i=1, 2,...). We shall prove that the set

H = {na+k; n,kel, [n| < Na;, b—N < na+k < b+(K+1)>N?}
satisfies our requirements. Obviously, H is finite. We have to show that
xel(x) and x < b imply xe HM,

Since H contains the integers between b— N and b+ 1, the intersection H™
contains every integer below b+ 1. Thus we may assume x = nax+k, n # 0.
We prove the following assertion by induction on |n|:

- 1
if x<b+(K+1)2N? L then xe H™,
n
For |n| < Na, the assertion is obvious (since then H contains the
numbers na+j for at least N consecutive values of j).
Let |nj > Na; and suppose that m,lel, 0<|m| <|n, and ma+1
<b+(K+1)2N?*m|~! imply moa+1e HM.
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Let {p,/q;}2 o denote the sequence of convergents of a. It is well known
that '

W) 0<qa—p < ifi=0,24,...
i+1

and

(8) —l <qa—-p;<0 ifi=1,3,5,...

9i+1
In addition, g0 =1, ¢, =a,, and ¢;,, = a;q;+q;,_, for i > 1, whence
gi+1 <S(K+1)q; for every i.
Let j be the greatest index satisfying the inequality q; < |n|//N. Then j > 1
and |n|/N < g;,, < (K+1)g;, which implies

|| ||

(9) m\qj <—ﬁ.
Let
q;a— pj if j is even and n <0,
df | —qjx+p; if j is odd and n>0,

h= gj-1a—pj—, if jis odd and n <O,

—qj-1a+p;—, if jis even and n > 0.
Then 0 <h <1/g; by (7) and (8). We shall prove that x+ihe H™ for

i=1,2,.., N, which by the definition of H™ will imply xe H™. Let i
(1 <i< N) be arbitrary. Then x+ih = ma+1, where either

m = ntig;, I = kZFip;
or
m=ntiq;_,, I=kFip;_,.
In each case we have 0 < |m| = |n|—ig; < |n| by (9) and by the choice of h.
If we show

(10) x+ih < b+(K +1)*> N? ﬁ

then, by the induction hypothesis, x+ihe H™ will be proved. Now we have

x+ih < b+(K+1)2N? L+i.
|n| q;

Therefore, (10) follows from the inequality

j 1 1 1 1
—'—s(K+l)2N2(———)=(K+1)2N2< _ ——)
q; Im|  |n| In| —iq; |n|

_(K+1)2N2'iqj
(Inl—igp)In|

8 — Colloquium Mathematicum XLIX.1
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However, this inequality is equivalent to

(ﬂ )' M < k17N,
q; q;

which is obvious by (9). This proves Lemma 2.

Proof of Theorem 2. Let f be a real-valued function defined on I(x)
and satisfying (1) for xelI(x) and hel(a), h > 0. Let a,bel(x), a <b, be
fixed. We have to show f(a) < f(b). Applying Lemma 2 for N = 2, we get a
finite set H < I(x) such that H® > I(a) n(—o0, b]. Let M = max {f(x);
xeH}. We prove f(x) < M for every x < b. Indeed, x < b and xeI(a) imply
xe H'®, and thus there exists a sequence x,, X, ..., X, such that x, = x and
for every k=0, 1, ..., n either x,eH or

X+ h, x,+2he{xg, X1, ...y Xp—1}

for a suitable positive h. Therefore, using (1), we get f(x,) < M for every k
=0, 1, ..., n by induction.
We put g = max(f, f(b)). It is easy to verify that g also satisfies (1). The
function g is bounded on [a, b] nI(a), say |g(x)| < K (x€[a, b] nI(a)).
Let N be an arbitrary natural number. We show that there are integers
p, g, r, s such that

(11) pa+qd;fc>0, ra+s=d>0
and
(12) Nc+(N+1)d=b—a.

Indeed, let b—a =na+k, n,kel. Then (12) is equivalent to the
conditions

(13) Np+(N+1)r=n
and
(14) Ng+(N+1)s=k

If t, uel are arbitrary, then p=(N+1)t—n, r = —Nt+n is a solution
of (13) and g =(N+1)u—k, s = —Nu+k is a solution of (14). These values
of p, q, r, s satisfy (11) if and only if

c=(N+1)(ta+u)—(nax+k)>0
and

d= —N(ta+u)+(na+k) >0,
that is, if

1 1
N+l (ne+k) <ta+u <—(na+k)
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Since na+k > 0 and I(«) is everywhere dense on the real line, we can
find ¢+ and u satisfying the inequality, as we stated.
Conditions (11) and (12) imply

(15) a<a+c<a+2<...<a+Nc<a+Nc+d<a+Nc+2d< ...
. <a+Nc+(N+1)d=b>

and the numbers in (15) belong to I(x). Let the function ¢ be defined by ¢ (i)
=g(a+ic) i=0,1,..., N). Then pe Fy and |¢| < K. Hence, by Lemma 1

g(a) = ¢(0) < ¢(N)+10K/N =g(a+ Nc)+10K/N.
Similarly, g(a+ Nc¢) < g(b)+ 10K/(N +1), and hence

1 1

Since N is arbitrary, we get g(a) < g(b), that is

max (f (a), f (b)) < max(f (b), f (b))
Consequently, f(a) <f(b), and the theorem is proved.
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