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INTRODUCTION

The purpose of the present paper is to investigate the monotonic
solutions of the functional equation of the first order.

Chapter I has a preliminary character. We give definitions of .con-
cepts that are needed in the following chapters and prove their main
properties. Besides new concepts (the almost dense set, the almost con-
tinuous space, the compactly ordered space) we define also some already
known ones. This is caused by the fact that various authors use different
terminology.

In Chapter IT we investigate increasing solutions of nonlinear equa-
tions of the first order

olf@)] = H(z,p(z)) and ¢(z) = Ple, ¢[f(@)]),

where f, H, F' are given functions. The function f is defined in a subset
A of a linearly ordered space X and takes the values in X and the functions
H and F are defined in A X Y and have their values in Y, where Y is
a linearly ordered space. We seek the function ¢ defined in A and having
its values in Y.

The purpose of Chapter III is to study the existence and uniqueness
of monotonic solutions of the equations

plf(@)] = o@)+h(z), ¢lf(#)] =g@)p@),

where g, h are given functions defined in 4 < X except for points of
a set Se2. Here 2 is a o-ideal of sets such that X ¢ Q. Values of these
functions lie in R and g(x) > 0. (Here R denotes the set of all real numbers.)
The function f is such as in Chapter II.

‘Similar problems as in Chapter III, in the case where all functions
are defined in an interval contained in R and have values in R, were
studied by: J. Burek and M. Kuezma [2], M. Kuczma [8], [11], [12],
and A. Smajdor [18]; and for f(z) = x+1 by F. John [6] and M. Kuczma
(91

The methods of proofs of theorems 3.1, 3.2, 3.9 and 3.16 in this
chapter originate from papers [6], [12] and [18].
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Chapter IV contains investigations of the existence and uniqueness
of monotonic solutions of the general linear functional equation

A f(x)] = g(@)p(@)+ h(2),

where g(x) > 0. For ¢g(z) < 0 analogous questions have been dealt with
by M. Kuczma [10] (g(z) = —1), D. Brydak and J. Kordylewski [1]
(9(x) = conat < 0) as well as A. Smajdor in [17].

The proofs of the theorems given in Chapter IV are based on the
results of the preceding chapters.



CHAPTER 1

DEFINITIONS AND AUXILIARY THEOREMS

§ 1. We say that a set X is ordered by the relation < iff for some pairs
(z, y)e X X X the relation » < y is defined and

(a) for every zeX we have z < x;
(b) if <y and y < @, then z = y;
(¢) if <y and y < 2, then z < 2.

A get X, ordered by a relation <, will be called an ordered space.

We say that z precedes y, and write z <y, when z <y and = # .

An element z of a subset 8 of an ordered space X is called the
greatest [least] element of the set § iff each element 2’eS fulfils the ine-
quality 2’ <z [2<72']

Let X be an ordered space and let S « X. An element zeX is an
upper bound [lower bound] of S iff for every z¢8 the inequality x <z
[2 < z] holds. We say that a set is bounded [upper bounded, lower bounded]
iff it possesses an upper bound and a lower bound [an upper bound,
a lower bound].

The least element (provided it exists) of the set of upper bounds
of § will be called the supremum of the set § and will be denoted shortly
sup 8. The greatest element (provided it exists) of the set of lower bounds
of 8§ will be called the infimum of § and denoted infS.

A function T(rx) defined in a subset § of an ordered space X and
having its values in an ordered space Y is called increasing [decreasing]
iff for every pair (z,y)eS X 8 such that # <y we have the inequality
T(x) < T(y) [T(y) < T(x)]. A function T defined in § ¢ X and having
its values in Y is called strictly increasing [strictly decreasing] iff for every
pair (z,y¥)eS x 8 such that # <y we have the inequality T(z) < T(y)
[T(y) < T(x)].

LEMMA 1.1 (A. Pelczar [14], [15]). Let X be an ordered space and
le¢ T: X > X be an increasing function. If the set

(zeX: o < T(2)}
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18 not emply and possesses the supremum in X, then the set of solutions
of the equation

T(x) =«
has the greatest element.

We say that the ordering relation < orders the set X linearly iff for
every x, ye¢X one of the two inequalites

r<<y or y<uz.
holds. '
Let X be a linearly ordered space. By the open [closed] interval with
the ends a, beX we understand the set

(a, b) {meX a<x<b} [[a,b] ._{weX a < x<b}l.
The set

(a, b]—{.'veX a<z<b} [[a, b)_{weX a < <b}]

is called the left-open [right-open] interval with the ends a, be X. Besides,
we put

(—o0,a) & {.DeX z<a}, (—oo,a]Z {zeX: z< a},
(a,+co) {weX a <z} [a,+oo)g{meX:a\<w}.

An arbitrary open interval containing z,e X \ {inf X, sup X} is called
a neighbourhood of z,. If z, = inf X [z, = sup X], then by a neighbour-
hood of z, we understand any interval of the form [z, a) [(a, z,]]. The
family of neighbourhoods so defined determines a topology in X (cf. [5],
p. 52). This topology is called the order compatible topology. In the sequel
the ordered space will always be treated as a topological space with the
order compatible topology. All topological concepts (closed set, closure
of a set, etc.) appearing in this paper are connected with the order com-
patible topology.

LEMMA 1.2. The infimum [supremum) (provided i3 exists) of a subset
of the linearly ordered space belongs to the closure of this subset.

Proof. Let S < X and ¢ = inf8. If ¢ = sup X, then 8 = {¢} and
g belongs to the closure of S. Suppose that ¢ # supX. If there existed
a deX,d > q, such that [¢,d) N S = @, then d would be a lower bound
of § and, since d > ¢, we obtain a contradiction with ¢ = infS. Thus
for every deX and d > ¢ the set [¢, d) N 8 is not empty, hence for every
neighbourhood U, = X of ¢ the set U, N § is not empty. Consequently
geS.

DEFINITION. We say that a subset Z of a linearly ordered space
X is dense [almost dense] iff for every z, y e X such that < y there exists
azeZ such that z <z <y [z< 2 <y].

A dense set is dense in X in the topological sense.
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We say that two linearly ordered spaces X and Y are similar iff
there exists a strictly increasing mapping ¢: X — Y such that o¢(X) = Y.
Such mapping is called a similarity. Every similarity is a homeomorphism.

LEmMMA 1.3 (cf. [13]). Every linearly ordered space X 1is similar to
the family of intervals P, = (— oo, x) linearly ordered by the inclusion.

A pair (A, 4’) of subsets of a linearly ordered space X is called
a section iff the following conditions are fulfilled:

(i) 4 Uud =X, _

(ii) if aeA and beA’, then a < b.

LemMMA 1.4 (cf. [13]). If pairs (A, A’) and (B, B') are sections of
a linearly ordered space, then A c B or B c A.

Leta = (4, A'), b = (B, B’) be sections of a linearly ordered space X.
We say that e and b satisfy the relation a < b iff A « B. According to
Lemma 1.4 the relation < linearly orders the set of all section of the
linearly ordered space X.

For every section (A4, A’) of the space X there are the following
cases possible:

(a) the set A has the greatest elenent and the set A’ has the least
element;

(b) the set A has the greatest element but the set A’ has not the
least element;

(¢) the set A has not the greatest element but the set A’ has the
least element;

(d) the set A has not the greatest element and the set A’ has not
the least element.

DEFINITION. A linearly ordered space is said to be: dense iff any
section does not fulfil condition (a); continuous iff every section fulfils
condition (b) or (¢); almost continuous iff any section does not fulfil condi-
tion (d).

Every continuous linearly ordered space is almost continuous.

DEFINITION. A linearly ordered space X which is almost continuous
and bounded is called a compactly ordered space.

Since the boundedness is meant as the boundedness in the space X,
it follows_directly from the above definition that every compactly ordered
space contains the greatest and the least element.

We denote by Z the set of all sections of the space which are of the
form a, = (P,, X\P,), and by X* the set of all sections possessing pro-
perty (d) or belonging to Z. The space X" is linearly ordered (see Lemma 1.4).

LeMMA 1.5. The space X* is compactly ordered. If X is dense, then
X* is continuous.
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Proof. At first we show that the set Z is almost dense in X*. Let
a,beX*and a <b. Ifa =(4,4’), b = (B, B’) then A c B and 4 # B.
So there exists
(1.1) xge B\NA.

If zeA then, since z,eA’, we have the inequality x < z,, that is
a,‘eP,o. Thus we have shown that

(1.2) AcP,.

Let zeP,. If xeB’, then since z,eB, we get the inequality z, <z
which contradicts the condition z¢P,. Thus we have the inclusion

(1.3) P,  B.
Conditions (1.1), (1.2) and (1.3) imply the inequality
a<a,<b.

Hence the set Z is almost dense in X*.

I. Suppose that there exists a section ¢ = (C, C’) of the space X*
possessing property (d). Then the pair (C NnZ,C’ N Z) is a section of
the set Z. Let d = (D, D’) be the section of the space X defined in the

following manner
p¥ U 4, DpLx\p.
(.4,A)(CAZ

If D had the greatest element a,, then there would exist an 4 such
that (4, A')eC NnZ, a,e A, and a, is an upper bound for A4, which is
not possible. So D has not the greatest element and hence deX*. If a<C,
then, since C has not the greatest element, there exists a,¢C, a < a,.
But Z is almost dense, so there exists a,eZ such that

(1.4) a<a,<a,.

If we had a,eC’, then the relation a,¢C would imply the inequality
a, <@a,. Thus a,eC NZ. On account of the definition of d we have a, < d.
Hence and by (1.4)

a<d.
Similarly we can prove that for every beC’
a<hb.

The last two inequalities show that d is the greatest element of C or the
least element of C’. This is a contradiction with the hypothesis that
¢ fulfils conditions (d). Thus we have shown that X" is almost continuous.

The space X* has the least and greatest element. The least element
is’ (0, X). If X has the greatest element a‘:,'.then the greatest element of X*
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is the section a;. If X has not the greatest element, then the greatest
element of X* is the section (X, @). Consequently the space X" is bounded.
Thus we have proved that the space X* is compactly ordered.

I1. Now suppose that X is dense. Let a, be X* and a < b.Ifa = (4,4’),
b = (B, B'), then A « B and B\ A4 # @. Since X is dense and for every
weX the set X\ P, has the least element (viz. ), the set P, cannot have
the greatest element. Hence neither A nor B has the greatest element.
There exists an z,e B\ A and, since B has not the greatest element, there
exists an @, > &,, #;¢B\A. Then A « P, < B and z,¢P;\4, #,eB\P_
that is

a<a, <b.

We have shown that if X is dense, then X* is dense, too. Moreover
X” is almost continuous, and thus it is continuous.

According to Lemma 1.3 the space X is similar to the set Z, so we
have.

LEMMA 1.6. Every linearly ordered space X is similar to a subspace
of the space X"*.
Now we shall prove

LeEMMA 1.7. In a compactly ordered space X each set possesses supremum
and infimum.

Proof. Let the set 4 be a subset of the space X and b = (B, B')

where B’ & {reX: y < x for every ye A} and B = X\ B’. In a compactly
ordered space each section has property (a) or (b) or (¢). If b has property
(a) or (b), then the greatest element of the set B is the supremum of A.
If b has property (c), then the supremmum of the set A is furnished by
the least element of the set B’. Similary we show the existence of the
infimum.

Taking into account that a compactly ordered space contains the
least element, we infer from Lemma 1.7 (c¢f. [5], p. 144) that this space
is compact.

LEMMA 1.8. From every sequence in a linearly ordered space we can
choose a monotonic subsequence.

Proof. Let {z,} be an arbitrary sequence of elements of a linearly
ordered space X. Suppose that there exists a subsequence {z,} of the
sequence {z,} such that for every », there exists a » fulfilling the condition

(1.5) T, <y,
Sy

and let Ty, be an element of the sequence {z, } fulfilling (1.5) for v, = »,
and such that »; <v,. Similarly, z, " is a term of the sequence {z, }
7]

Then for every », there exist infinitely many » fulfilling (1.5). Let 2, =
Y1
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fulfilling (1.5) for », = », such that »,., >,. The sequence {2, }isan
n

increasing subsequence of {z,}.
Now suppose that for every subsequence {z,} of {r,} there exists
a v, such that for every » the inequality

7 <7 7
,, < @y, -

is fulfilled. There is an element z, of the sequence {#,} such that

(1.6) T, < Ty, for #n>=1.

There is an element z,, in the sequence x, ,,, , ,,,... such that

(1.7) z, <&, for n=n;+1.
Similarly, there exists x, in the sequence z, ,,,®,, s, ... such that
(1.8) &, <@, for n>=n+l.

It follows by (1.6), (1.7) and (1.8) that the sequence {z,, } is decreasing.
This completes the proof.

LEMMA 1.9. In a compactly ordered space from every sequence {x,}
one can choose a convergent subsequence.

Proof. In virtue of Lemma 1.8 we can choose a monotonic, say
increasing, subsequence {r,,}. In view of Lemma 1.7 the set of terms
of this sequence has the supremum. We shall show that

lim z,, = snip By, -

n
k—o0 k

and let U be a neighbourhood of the point x. There

Let z = stklp:v“k

exists an interval (a, ] « U. According to the definition of the supremum
there exists a;,,,koe(a, x]. The sequence {z,,} is increasing, thus for ¥ > k,
we have z, e(a, z]. Hence for k >k, we have z

lim z,, = If {x,,} is decreasing then lima,
k—o0 k—o0

ne € Uy and consequently
= infx, .
K E

As is known, a space X is called connected iff it does not admit a re-
presentation in the form of a union X, u X, of two closed, separated
and non-empty subsets. A set A —« X is connected iff it is a connected
subspace of X. We shall prove

LEMMA 1.10. A linearly ordered and continuous space X is connected.

Proof. Suppose that there exists closed, separated and non-empty
sets X, and X, such that X, u X, = X. Let aeX,, beX,. We assume

that a < b. Let C’ denote the set of all upper bounds of the set X, N [a, b],

¢ £ X\C'". The set X, n[a,b] is closed. The space X is continuous,

so the section (C, C’) has property (b) or (¢). Suppose that C has the
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greatest element ¢,. Any. element of the set ¢’ does not belong to X,,
since ¢’ has not the least element. Thus ¢, is also an upper bound of
X, n[a, b]. This is not possible.

Now, we suppose that ¢ has not the greatest. element. In such a case
C' has the least element ¢, and ¢, = sup X, N [a, b]. It follows by Lemma
1.2 that ¢, is a point of the closure of the set X, N [a, b]. This set is closed,
80

(1.9) c,eX, n[a,b].

Since ¢, is the upper bound of the set X, N [a, d], for every de(ec,, d]
we must have (¢,,d) N X, = @. On the other hand, since the space X
is dense, we have (¢,,d) #0 for every d, ¢; <d<b. Thus for every
de(c,, b] we have (¢,,d) N X, # . Hence ¢, is a point of the closure
of the set X,. The set X, is closed, so ¢,eX,, and this is contradictory
with (1.9). This completes the proof.

Every interval of a continuous space is a continuous subspace, so
intervals in the continuous space are connected sets. On the other hand,
every connected subset of a linearly ordered space is an interval. Thus
we have

COROLLARY. A subset A of a connected space i3 connected if and only
if it is an interval.

From the fact that a continuous ima'mge of a connected set is connected
we obtain

LEMMA 1.11. Suppose that X and Y are linearly ordered spaces and
A c X i3 a connected set. Then every continuous function f: A > Y has
the Darboux property.

LEMMA 1.12. Let functions f: X - Y, g: X - Y, where X and Y are
linearly ordered spaces, fulfil the inequality
f@) < g(=)

in a neighbourhood 8, of ®,, and suppose that f, g have limits at x,. Then

lim f(z) < lim g(2).

>y T—>To

Proof. Suppose the contrary, i.e.

a =1lim f(z) >b =1lim g(z).

TZp -1

If the interval (b, a) is empty, then there exists a neighbourhood Sgo of
z, such that

f(Sgo) c (b, +o0)cfa, +) and g(Sgo) c (—’oo, a) c (— oo, b).
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Thus for z¢82, N 8, we have f(z) > a and g(z) < b, whence

=
a< fle) < g(e) <b,

in spite of the supposition b < a. If the interval (b, a) is not empty, then
for ce(b, a) there exists a neighbourhood S;o such that

f(8) = (e, +o0) and ¢(8;) = (—oo,0).

Hence for ze8, N §;, we have ¢ < f(z) < g(z) < ¢, which is impossible.
Thus a < b.

§ 2. DEFINITION. We say that a class 2 # O of subsets of a get
X is a o-ideal iff it fulfils the conditions:

(I) If 8;eQ, 6 =1,2,..., then |J 8.
i=1

(I) If 8, = 8;, S,¢2, then 8,e£.

In the sequel we shall assume also that

(III) X ¢Q.

The following are examples of o-ideals which do not contain X:
(a) the class of at most countable sets in an uncountable space X;
(b) the class of sets of measure zero in the space R of real numbers;
(e) the class of sets of the first category in the space R of real numbers;
(d) the class which has the empty set as the only element.

In the sequel we consider a fixed s-ideal 2 which does not contain X.

We shall say that a condition holds Q-almost everywhere (2-a.e.)
in X iff there exixts a set SeQ such that this condition holds in the set
X\S.

Let a real-valued function % be defined £-a.e. in a set A. We define
the essential supremum (essential infimum) of the function » with respect

to 2 as follows:
supessh(z) & inf[ sup k(z)] (infessh () & sup[ inf h(x)]).
Ted (Q) Se zedA\S Ted () Se zedA\S
In particular, the function h can be a measurable function on a set
A, and 2 can consist of sets of measure zero. Then a condition holds
Q-almost everywhere iff it holds almost everywhere in the usual sense

and supessk(z) is equal to the usual essential supremum of a measurable
zed (2)

function (cf. [16], p. 13). If the class 2 consists of the empty set only,
then a condition holds £2-a.e. iff it holds everywhere, and the essential
supremum is the supremum in A.

LEMMA 1.13. Let k be a function defined 2-a.e. in a subset A of a linearly
ordered space X, with values in the set of real numbers. Then there exisils
a set S,eQ such that

infessh(z) = inf h(z).
zed (Q) ze A\S)
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Proof. Let
a, — infessh(z) = sup[ inf h(z)].

zed () Se2 red\ S

First we suppose that a, > —oc. Let

n if a,= + oo,

a,—— if  a,< + o0,
)

For every positive integer n there exists a set S, such that

(1.10) inf h(x) > a,.
Te ANSp,

Let 8, = UJ §,. Then Sy,¢2 and
n=1
(1.11) a, = sup[ inf Z(z)] > inf A(z).
Sel e A\S e AN\S)

On the other hand, for every positive integer n

inf A(z)>int k(2),
e AN\Sy ze AN\Sy

since AN\S, c A\S,. Hence and by (1.10) we have
inf h(z) >a,,

ze ANSp
and with # - oo we obtain
(1.12) a, <inf h(w).
ze AN\S)
Inequalities (1.11) and (1.12) yield the assertion of the lemma.
If a, = — o0, then for every Se2 we have inf h(z) = a,.
Te ANS

DEFINITION. Let & be a real-valued function defined £-a.e.in A c X,
where X is a linearly ordered space. We say that A attains the essential
infimum at a point z, ¢ 4 iff there exists a sequence {z,}; z,¢4,n = 1,2, ...
such that limz, = z, and limh(z,) = infessk(z).

n—>00 n—>00 zed (Q)

LEMMA 1.14. Let h be a real-valued function defined Q2-a.e. in A c X,
where X i8 a compactly ordered space. Then there exists a point x,e A such
that the essential infimum of h in the sel A is attained at this point.

Proof. In virtue of Lemma 1.13 there exists the set Sy,¢£ such

that a, = infessh(z) = inf h(z). If a,¢R, then for every positive number
zed (9) ANS)
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n there exists an element x,¢ A\ S, such that
1
(1.13) a, < h(z,) < ao—l-;.

According to Lemmas 1.8 and 1.9 there exists a monotonic and convergent
subsequence {z,,} of {z,}. Let
Ty, = lim z,

k—00

R

By (1.13) we get lima(z,,) = a,.

k—o0

If ay = — o0, the proof is analogous. Then we replace (1.13) by the
inequality k(z,) < —mn.



CHAPTER 1I

INCREASING SOLUTIONS
OF A FUNCTIONAL EQUATION OF THE FIRST ORDER

In this chapter we shall study the increasing solutions of the equations

(2.1) o[f(#)] = H(z, p(z))
and
(2.2) ¢(z) = Flz, [f(2)]),

where # varies in a certain subset of a linearly ordered space X.

§ 1. We make the following hypotheses:

(H,) X and Y are linearly ordered spaces, 4 = X.

(Hy) f: A— 4 is an increasing function satisfying the inequality
& < f(x) for every zeA and such that for every ze¢A the sequence {f(z)}
of the iterates of f has not an upper bound in A.

Suppose that hypotheses (H,), (H,) are fulfilled, Q c R, the fungtion
H: A x@Q — @ is increasing with respect to the first variable and strictly
increasing with respect to the second variable. Let ¢ be an increasing
solution of (2.1) and #,, z,e4, , < &,, f(2,) = f(z,); then

(2.3) : H("”n ‘P(%)) = H(wz, ‘P(mz))-

Taking into account the fact that H is stﬁctly increasing with respect
to the second variable, the inequality ¢(z,) < ¢(z,) i8 incompatible with
(2.3). Therefore ¢(z,) = ¢p(x;). From (2.3) we obtain the equality

H(a’u ‘P(-’”l)) = H(wzy tp(wl))‘

DEFINITION. We say that geS;(B), B < A, iff for every x,, z,¢B
the equality f(x,) = f(x,)implies g(z,) = g(x,).

The above considerations justify the following hypothesis

(H;) @ is a subset of the space Y, H: A xXQ—Q is an increasing
BU
\\4

2 — Dissertationes Mathematicae LXXXI
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function with respect to both variables and for every fixed ¥ ¢Q we have
H(z,y)eSy(A). Moreover, for every xe¢A the set

Q: = {y<Q: y< H(z, y)}
is not empty.
We shall prove

THEOREM 2.1. Let hypotheses (H,), (H,) and (H;) be fulfilled. If
a, = inf A exists, aje A and Q i3 a continuous subspace of Y, then for every
increasing function @geSi(A N [ay, f(a,)]) defined on A N [a,, f(a,)], hav-
ing values in Q and such that

(2.4) ®olf(ay)] = H("'t;’ %(%))

there exists a (not mecessarily unique) imcreasing fumction ¢ which i3 an
evtension of g, onto A and satisfies equation (2.1) in A.

Proof. Let
(2.5) a, =f(a), n=1,2,...
We choose a y,¢Q,, and an arbitrary increasing function ¢ye8;(4 N [a,,4,])
defined on A N [a,, @,], having values in @ and such that
(2.6) Po(@0) = Yoy  Po(a:1) = H(ao, Yo)-

In the set f(A4 N [ay, a,]) < [a,, a;] N A we define a function ¢, by the
formula

(2.7) ¢ (2) = H(z', g (2))

where ' is an element of the set f-!({z)}. According to (H;) the value
@.(2) is independent of the choice of #’. The functions ¢, and ¢, fulfil
the equation

(2.8) , 7:[f(@)] = H(z, 90(2))

in [a,a,] NA. Let @, z¢f([ag, 8,] N A), ©, <7,y and @,¢f~1({z,}),
zyef-1({z,}). ¥ we had z; > a;, then, according to the monotonicity of
f, , = f(x1) > f(z;) = x,. Hence &, < z;. The function H is increasing
with respect to both variables, whence from (2.7) we obtain

Tl(ml) = H(-"’;; 'Po(“".;)) < H(a,';, 9’0(“’;)) = ¢1(&,).

Now, ¢, is increasing on the set f([a,, a,] N 4). From (2.8) we obtain
p1(@) = @1[f(a0)] = H(aos ‘Po(“o))s and from (2.6) we have

1(a)) = @o(ay).

If the set A n[a,, a;]\f([a,, a,] N A) is not empty, then we define
the function ¢, arbitrarily on this set, but in such a manner that ¢, is
increasing on [a,,a,] N A.



























































































































