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On neighbourhoods of univalent starlike functions

by RicHArRD Fournier (Montreal, Canada)

Abstract. Let A denote the class of analytic functions f in the unit disk with f(0) = f'(0)
—1=0.For f(z) =z+ Y, a,z* in A and 6 > 0 Ruscheweyh has defined the d-neighbourhood of
k=2
f as

No(f) = lge Al gz) =z+ ¥ bz* and Y kla,—by) < 4}.
k=2

k=2

In this paper we study various properties of N,(f), where f'is assumed to be a univalent starlike
function.

Introduction. Let A denote the class of analytic functions f in the unit

disk E = {z| |z| <1} with f(0)= f'(0)—1=0. For f(z)=z+ ) 4z*in A
k=2
and é = 0 Ruscheweyh has defined the -neighbourhood N;(f) as follows:

Ns;(f)=1{geAl gz =z+ Z b, z* and Z kla,—by < 6}.

k=2

He has shown in [3], among other results, that if (f(z)+ez)/(1 +¢&)e S* for all
complex numbers & with |¢] <, then

(1) Ns(f) = §*.
Let B < A. For 6 = 0 we define

{f B| f( )+ eB for all complex numbers ¢ with || <¢$}
and if n> 2 is an integer

B™ = %feBl f(z)+%z"eB for all complex numbers ¢ with |g| < 6}.

It follows easily form Ruscheweyh’s result and the definition of
neighbourhoods that for é > 0

(2) feS*¥ P Ny(f) =8*= feS*®  for all n> 2.
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Ruscheweyh raised the following question: what can be said about the
converse of the implications in (2)? For example is it true that, for any é > 0,
§*23 — §*1% or is it true that N,(f) = S* = feS*"*? It has been proved
([2]) by Rahman and Stankiewicz that, for any 6 > 0, S**° < S*1¥" if n > 2
and it follows, according to (1), that

feS*™ =Ny (f)=S* ifn=2and 62

We prove:
THEOREM 1. Let 8 = 0. Then feS***= N,(f) c S*.

THEOREM 2. Let n > 2 a positive integer. Then there is a function fe A
and a real number 6, 0 <6 < 1, such that feS*™® and N,(f) ¢ S*.

THEOREM 3. There is a function fe A and a real number 6, 0 <é < 1,
such that Ny(f) < S* and f¢S*'.

At this stage we may ask if the above theorems describe properties of
starlike functions or more general structural properties of neighbourhoods.

We introduce the following classes of univalent functions depending on a real
parameter t > }:

'@
e

It is well known that the classes (S*), contain univalent starlike functions and
it can be shown ([1]) that Ruscheweyh’s result (1) can be extended to (S5*),
only when ¢ > 1, that Theorem 1 is valid for (S*), only when ¢ > 2, and that
Theorem 2 remains true for (S*), when > 1. On the other hand the
following results show that the behaviours of S* and (S$*), with respect to
neighbourhoods may be quite different. We prove

THEOREM 4. Let 6 > 0 and fe(S*),. Then Ny(f) = (S*), = fe(S*)}? if §
<t < 1. Moreover, this result is false for each t > 1.

THEOREM 5. Let n =2 a positive integer. There exist a positive real
number & and a function feA such that fe(S*)y3 and, for any o >0,
Ne(f) & (S*)w2-

It is especially surprising that, for any 6 >0, N,(f) < §* « fe§**?
but N;(f) = (S*),; < fe(S%)i®. Nevertheless the classes (S*), and S* also
share some common behaviour with respect to neighbourhoods. For example
it follows from Theorem 1 and some of the remarks above that for any é > 0

(§%), = {f Al

<t, zeE}

Ny(f) cS*<fe N S*°
n=2
and

No(f) = (S fe N (S if 122,
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In fact this last statement is valid for any t > % as will be shown by the proof
of Theorem 4 (see Lemmas 4.1 and 4.2).

We would like to close this introduction with some remarks concerning
neighbourhoods of univalent convex functions. It has been proved ([3]) by
Ruscheweyh that N,,(f) c S* for any convex univalent function f, where
the constant 1/4 is the best possible. Since the function that will be used in
the proof of Theorems 2 and 3 can be chosen to be convex no improvement
of those theorems can be obtained by replacing S* by C = | f € 4| fis convex
univalent in E}. But we can prove

THEOREM 6. Let 6 >0 and feC. Then Ny(f) £ C. However, N,(f)
contains only univalent functions if o < inf|f'(z).

F4

Finally we point out that in establishing most of the above mentioned
theorems our main tool is the Hadamard product (or convolution) of

analytic functions. If the two functions f(z) =z+ ) a,z" and g(z) =2
n=2

+ ) b,z" belong to A their Hadamard product is the function f*g in A4
n=2
defined as
f*g(2) =2+ ) a,b,z"
n=2

It is not difficult to verify that many classes mentioned above can be defined
in terms of convolution. For example

h
3) feS*<VTeR, V:zeE, QZT(Z’ £0,
_zZ/(1—2)!iTz[(1—2)
where hy(z) = {TiT , and
ho(z
@) fe(S*), <=>V0e[0,2r], V:zeE, Qz—a(——) #0,
/(=2 ~1(1+e%z/(1-2)
where hy(z) = 1+ )
We shall also need, putting S = | fe 4| f is univalent},
h
) feS<=V¥xeC (x<1), VzeE, y £0,
z

where hx (Z) = (I—ZTX_Z)-
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Proof of Theorem 1. We need the following lemma. It is an extension of
the result given by (3).

Lemma 1.1. Let 6 > 0 and n a positive integer > 2. Then

,.,,,a f*hT(z)
feS =

—, TeR, zeE,

n+iT hP(0)
1+iT  n!
The proof of Lemma 1.1 depends essentially on (3). We have

where c,(T) =

&
(f(z)+;z")*h7(z)
feS* #0, TeR, z€E, |g <6

z

D> h’r (2)

-I «(Dllz”~', TeR, zeE.

A straightforward application of the maximum principle to the non-vanishing
function f *hy(z)/z will then show that the last condition is equivalent to

S *h(2)
z

—| .(T), TeR, zeE.

This completes the proof of Lemma 1.1.

We are now ready to prove Theorem 1. Let feS**° and ge N,(f). In
view of (3) it will be enough to show that

g *h,-(z)_

-
4

#0, TeR, ze¢E.

We have, according to Lemma 1.1,

S [fxhr (@) I(Q—f)*hr(z)
l‘-cz(T) l z¢,(T)

g * hr (2)
| ze,(T)

=20

'(g —f)*hr(2)
z¢,(T)

k=2

because if f(z) =z+ ) a,z* and g(z) =z+ ) b, 2"
k=2

G=N*hr(2)] | & alT) 1
(©) l zc,(T) B kZZ' 2(T)(bk~ah)2k l
* k
(7) < Z b —ay
k=22

<36 because ge N;(f).
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The passage from (6) to (7) is justified by
e (T) _‘k+iT k

— <% ifk>2and TeR.
(D~ 2+iT|S2 and 1€

This completes the proof of Theorem 1.

Proof of Theorem 2. We need the following lemma. Its proof is
essentially computational and will be omitted here.

Lemma 2.1. Let f(z) = z(1+ pz)', where p > 0 and the branch of (1+ pz)’
is chosen in such a way that f'(0) = 1. If p is close enough to zero we have

that f(z) and zf'(z)/f (z) are bounded analytic functions in the closed unit disk
and

(8) there is K, >0 such that Re(zf'(2)/f (2)) > K, |z] € 1,
(9) there is K, > 0 such that |f (z)/z| > K,, |z} <1,
(10) if lul =1 and O <|f'(u)| = inf|f'(2)l, then uf (u)/f (w)¢R.
zeE

Let n> 2 and f be defined as in Lemma 2.1. We first show that

NS xhe @) . G
W el 2ea(D) | e m
In fact if |y =1 and |f’(u)| = inf|f’'(z)] we obtain, in view of (10),
zeE
uf ' (u) | . uf ' (u) uf ' (u) ‘
2T 2 — P
S T O P2 I TR R O
rem| n+iT 2n n|f(u

and there must exist a real number T such that
|f*he ()| | W) +iTf (w)/u < IS W)l _ im.If’(Z)I
| uc,(T) n+iT n e M

It is clear from (12) that (11) is valid.
Then we define & by

o

(12)

S xhp(2)

= inf e.(T)

TeR
zeE

x|

It is clear from (11) that § < 1; since

o'(2)
@ "

#'(2)
f #hr(2) 1@ "’

| zca(T)
it follows easily from (8), (9) and the fact that |zf'(z)/f (z)| is bounded that

c)

> 5

2n
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d>0. It is a consequence of Lemma 1.1 that
(13) fes*s,
There must exist Toe RU {0} and z, with |zo] <1 such that
5 _|f *hry(zo)
n 1 206(T)

n
and it should be clear from (11) that T, % 0. On the other hand

(14) |f*hro(zo) 3 S xhro(2o) ||, (To) <5(’n)_5
|20¢2(To) | | zo¢a(To) llea(To)| " n\2) 2
lea(To) | [n+iTy| n .
s = —if 2 T A
because |c2(T0) |2+i78 <2 if n>2and Ty #0
It follows from Lemma 1.1 and (14) that
(15) S¢5**% and  Ns(f) ¢ S*.

In view of (13) and (15) the proof of Theorem 2 is completed.

Proof of Theorem 3. The proof of Theorem 3 is similar to the proof of
Theorem 2 and only the main steps will be supplied. We choose the function
f as in Lemma 2.1. We first establish that

S*hr(2)) . 1f'(2)
[JEAR A
TE,'Q' zc,(T) <:EE 27

and we define & by 16 = inf|f *hr(z)/zc,(T). It foliows from (16) and

TeR
zeE

Lemma 2.1 that 0 < § < 1; it follows from Lemma 1.1 that feS$*2% and by
Theorem 1 we have

(17 N;(f) = §*.

On the other hand if %6=|f*hro(zo)/zoc2(7},)| with |zo| €1 and
Toe Ru {0} it follows from (16) that T, # 0 and

(16) inf

(18) ‘f*hro(zo)
z

1]

0
=Jlea(To) <&

2+iT
1+4iT
inf | f # hy(2)/z| < & and f ¢ S*!-%. This, together with (17), completes the proof

TeR
zeE

of Theorem 3.

because |c,(T)| = '<2 if Ts#0. It is then obvious from (18) that
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Remark about Theorems 2-3. Theorems 2 and 3 answer Ruscheweyh’s

question in the negative. But it is possible to give sufficient conditions under
which the question may be answered positively. We can prove (the proofs are
omitted):

THEOREM 2. Let fe A such that

A b . 1)
}’:E.f. (D |-

Then Y6 >0 Vn =2 (feS*® = N,;(f) c §*).
TueoreM 3. Let fe A such that

nf S *hp(2)]
z

TeR
zeE

=inf| /7 (2)).
zeE

Then V6 >0 Vn>=2 (feS*™° = feS*9),

In general the result of Rahman and Stankiewicz quoted in the
introduction shows that feS**®= N,,(f) = $* if n > 2. We think that this
result is best possible when n > 2 but we are unable to prove it.

Proof of Theorem 4. For the proof of the first part of Theorem 4 we
need the following lemma which is an extension of (4). The proof is very
similar to the proof of Lemma 1.1 and will be omitted. We recall that h,(z)

= ) c,(0)z", where

n=1
n—t(1+€9

aO =10+

Lemma 4.1. Let > 0 and t > 4. Let also n > 1 be a positive integer. Then

fehy(@)| 8|S @-t1+6)f@)z| 3
z¢,(0) T n
0[O0, 2r], z€E.

fes¥) e

Let $ <t <1 and N,(f) =(5*),. This means that fe [ (§*)
n=2

letting n — oo in Lemma 4.1 we obtain easily

12f’(z)_1’
t f(2)

-0 +1 >0, zekE.

(19) Ns(f) = (§*) =11 (2)/]

7 — Annales Polonici Mathematici
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On the other hand it also follows from Lemma 4.1 that
(20) fe(S%)'*
I \(1T@_ l_’(lzf'(z)_ _(1_ ’
I"‘(z e 1) G- s
1—(1/t—1)? ’
zeE.

The definition of the class (S*), and a comparison of (19) and (20) show that
the proof of the first part of Theorem 4 will be completed if

1-wOw@)—lwE)-wO) _ 1-|w()
1 —w(0)? “ 1+w(0)’

for any analytic function w(z) in the unit disk E with |w(z)] <1 and 0 < w(0)
< 1. But we have

=|f(2)/z

(21)

zeE,

[1-w(Q)w(2)|*—|w(z)-w(0)
L+|w(0) jw(2)| +[w(2)| + |w(0)|
_ (1=w(2)?) (1 —w(0)?)
(1+Iw()]) (1+w(0)
from which follows the truth of (21).

We now proceed to show Theorem 4 when ¢t > 2. Since Theorem 1 is
valid for (S*), when ¢ > 2 ([1]) it will be enough to show the existence of a
function f and of a positive number é such that

fe(*F®  and  f¢(S*).
We choose f as the function in Lemma 2.1 and show that

fehe(z)| . IS (2
25,0 | <

[1-w(O)w(z) —|w(z)—-w(0)} >

0<§=: inf

<1.
2 e0.2n)
zeF

Just as in the case of Theorem 3

6 f‘hﬂo(ZO)
—=|[————|, where |z <1 and 0,€[0, 2x], 6, # x.
3= 1o, 60 2l 0e[0, 2r), 6,
It will follow that
f‘hﬂo(z[))
—| <
Zo

and by Lemma 4.1, fe($*)*° and [ ¢(S*)!%. This completes the proof of
Theorem 4 when ¢t > 2.

For the remaining case we need:
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LemMa 4.2. Let 1 <t <2 and 6 >0. Then
t% —'f’(z)—t@,>5, zekE.

Proof of Lemm 4.2. The sufﬁcicncy is just the statement (19). Assume
that f(z) =z+ Z az giz)=z+ Z b,z*e N,(f) and

Ny(f) =

.f(z) P()-t@ zeE.
Then
(2] b -2 > - (: L2-L2s g - a)- t(‘i(—’—@))
. Z
because

Z (t+lk—t)iby—ayl <

k=2

o-t2).

This completes the proof of Lemma 4.2.
We shall also need (stated here without proof)

LemMMA 43. Let —1 <& < 0. There exists € > 0 such that
1—&2l—|z— fl —|z|

1-¢2 1+§
We are now ready to prove Theorem 4 when 1 <t <2 Let w be a

Mo¢#bius transform with w(0) = 1/t —1 and such that the image of the unit
disk under w is the interior of a circle C with the following properties:

(22) the interior of C is included in E,
(23) the circle C is tangent to the unit circle at 1.

Let also 0 <p <1 and define fe(S*), by the equation

ﬁ (21" (2)- '(g(—)—&)

since ge N,(f) and } <t <2

zeE and |arg(z)l<e=>

It is clear that
inf |f2)|[1— |W(p2)|
zeEI Z 1+W(0)

and, by Lemma 4.2, N,(f) = (S*),. It is also true that for p close enough to 1
it follows from (23) that the inf in (24) is attained when |arg (w(pz))l < ¢ and

(24) 0< =5<1
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by Lemma 4.3

|f(z) |1 —w(0) w(pz)l = |w(pz) — w(0)| <in lf(z) 1—-{w(pz)| _
,EE| 1—w(0)? ,EEI z | 14+w(0)

The comparison of (25) and (20) gives f¢(5*)!**. This completes the proof
of Theorem 4.

Proof of Theorem 5. We shall need the following lemma. It was first
proved by Ruscheweyh ([3]) for the class S*.

LemMMa 5.1, Let t >4 and fe(S*), such that inf |f *hy(z)/z} = 0. Then

0¢{0,21%]
zeE

(25) 0<

for any a >0, N,(f) & (S%),.

In order to prove Lemma 5.1 we may assume that r > 1, since it follows
from Theorem 4 and Lemma 4.1 that

S #hg(2) >

¥4

N.(f) =(8*), = fe(S*)* = inf
0e[0,2x]
zeE
Let t > 1 and n be an integer = 2, n # 2t. Let a > 0. There must exist zoe E
and 0, €[0, 2n] such that

if { <r<1

|f*hoo(zo) o|n—2]
(26) |z n2x—1"
Otherwise
[ *hye(2) ltzln 2t
> a—
. lz] o 1° 0el0, 2rn], z€E,

and an application of the maximum principle to the non-vanishing function
S #hy(z)/z would then contradict the assumption of Lemma 5.1. We put u
=f‘h90(20)/20 and

g@)=f()- (90)

Since
i0 _
ey(@g) = tArE N S =2
N—t(1+e 9 2-—1

we obtain from (26)

when t > 1,

n H

n(00)<a and geN,(/).

On the other hand
g "hoo(zo) _ f"hoo(zo)

Z0 Zo

—uzg" ' =0



Neighbourhoods of univalent starlike functions 199

which, according to (4), means that g ¢(S*),. Therefore N,(f) ¢ (S*), and this
completes the proof of Lemma 5.1.
We also remark that for any 4 >0 and n> 2

7@ _, :
n (z) (2)
@7 fe(s'u),.;‘;on}fzz ‘2’1_’(!;2;(2’_1)'”’ zeE.
n f(2)
In fact by Lemma 4.1
Fo-tna+enl2 |
fe(S"'):;§¢| (158 > zeE, 0€[0, 2r]
(ZE{'(L’_I)_do
¢nlfiz) | e >3, zeE, e[, 2r]

and (27) is then valid because

)
inf Ié ¢

0€[0,2n] ll _ew

B
—2“_:' if | <.

We are now ready to prove Theorem 5. Define a function fin A by
22f"(2)

n 1)

where the function W(z) maps E onto the domain E’ illustrated by Fig. 1.

-1= W(Z),

Since E' c E it is clear that |W(z)} <1 and fe(S*),,. There exist
positive constants K, and K, such that

(28)
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1— | W(z)?
—wey ¥

The statement (28) is valid because fe(S*),, =S and the statement (29)
depends on a well-known property of Stoltz angles. We define § as

22172
_EZE
: tf(Z)

2zf'(2) )'
2’1—(———1
n f(z)
It follows from (28) and (29) that 0 <8 <1 and in view of (27)
fe(S*)33-
On the other hand the boundary of E’ meets the unit circle and
(ZZI’(z)_l)_ o

n f(2)
11—4n(1+ €9

(29) zeE.

2

5=infn[/@

zeE IZ

S *hy(2)

4

it 1@

sef0.292 | Z
zeE

inf

#e[0,2x]
zeE

= 0.

=

This means, in view of Lemma 5.1, that N,(f) & (S*),, for any a > 0. The
proof of Theorem 5 is completed.

Proof of Theorem 6. We first prove that for any feC and 6 >0,
Ny(f) £ C. In fact, if Ny(f)=C then, for any n>=>2 feC™ and
zf'(z)e S*™™. In view of Lemma 1.1 this means that

2" @)+ ho(2)]  |of"(2)+S"(2)
G0 @ | »

and putting z = 0 in (30) we obtain § < 1/n for any n > 2 and therefore
= 0. This completes the proof of the first statement of Theorem 6. We
remark that this statement means that Ruscheweyh’s result (1) admits no
extension to the class C. On the other hand, by defining N)(f) for f(z) =z

@
a,*eA as
=2

>0, zeE,n>2

+
k

Ny(f) = {gedl g@) =z+ Y, byz* and } k*|a,—bil <35},
k=2 k=2

we obtain (the proof is omitted), for any é > 0,
feC=N;(f)=C.
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In order to prove the second statement of Theorem 6 it will be enough,
in view of (5) and Ruscheweyh's work (see [3]), to show that for feC,

J(2)—S(x2)

(31) ,i:‘l‘{. (1—x)z =ig£|f'(2)|-
It will be clearly enough to show that
() int LOZLOD )5 ooy,
- ek | (1-X)z zeE
Ix <1t
and the truth of (32) follows from
O amb
3 s | 0=9: |7 wie @0
_( " @) —f " ‘(b)D
absf(E)I a—b
(34) (Stl(p) Iy e
= inf|f'(2)].

zeE

The passage from (33) to (34) is justified by the fact that, since f(E) is
convex, we have for a, be f(E)

1
(g =11 (b
e
0

< sup |(f 1) (o)l
cef(E)

This completes the proof of the second statement of Theorem 6. The
example f(z) =(e™—1)/n shows that (31) is not valid for all univalent
functions; in fact

f(@)—f(x2)

inf{f'(z)) =e *>0 and inf
- (1—-x)z

zeE

=0 because f(i) = f(—i).

jxl <1t

We also remark that (31) can be used to show (the proof is omitted) that for
feC,6>0and n=2

feS™es Ny(f) = S<>feS'.

Conclusion. We would like to mention that some of the results of this
paper can be extended to certain classes of non-starlike univalent functions.
For example if

= {feA| Re(f'(2) >0, zeE)



202 R. Fournier

we can prove that for any n>2 and 6 > 0,

feH" < Ny(f)c H<>Re(f'(z)) >8, :z€E,

and
feH Y < |f'(@)+1=-|f'(2)=1] > 26, :zeE.
@)+
1+ia
of convolution. The function fye H defined by

Since Re(f'(2)) > 0« # 0, ae R, the class H can be defined in terms

1
fie) = a+(1—5)-1“:—§, 530,

has the interesting properties that N,(f;) = H and f;¢ H'# for any § > 0.
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